MATHEMATICS

Univ. of Gothenburg and Chalmers University of Technology
Examination in algebra : MMG500 and MVE 150, 2018-08-22.
No books, written notes or any other aids are allowed.
Telephone 031-772 5325.

1) Let $F=\mathbf{Z}_{2}=\{0.1\}$ be the field of binary numbers and $\operatorname{GL}(2, F)$ be the multiplicative group of 2×2-matrices $\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ with entries in F and determinant $\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right| \neq 0$.
a) Determine the order of GL(2,F).
b) Determine the normal subgroups of GL $(2, F)$.
2) Let S be the set of column vectors $\binom{x_{1}}{x_{2}}$ with entries in $F=\mathbf{Z}_{2}$ and
π : $\mathrm{GL}(2, F) \times S \rightarrow S$ be the map which sends $\left(\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right),\binom{x_{1}}{x_{2}}\right)$ to $\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{a_{11} x_{1}+a_{12} x_{2}}{a_{21} x_{1}+a_{22} x_{2}}$
a) Explain why π gives a group action of $\mathrm{GL}(2, F)$ on S. (You may use standard rules for matrix multiplication without proof.)
b) Determine the orbit and stabiliser of $\binom{1}{0} \in S$ under this action,
3) Let $\varphi: R_{1} \rightarrow R_{2}$ be a homomorphism of rings and J an ideal in R_{2}.

Show that $I=\varphi^{-1}(J)$ is an ideal of R_{1}.
4) For primes p. let $\mathbf{Q}(\sqrt{p})$ be the set of all real numbers of the form $a+b \sqrt{p}$ for $a, b \in \mathbf{Q}$.
a) Show that $\mathbf{Q}(\sqrt{p})$ is a subfield of \mathbf{R}.
b) Show that these fields are not isomorphic for different p.
5. Let $*: G \times G \rightarrow G$ be an associative binary operation on a set G.
a) Show that $(G, *)$ has at most one neutral element.
b) Show that each element of G has at most one inverse with respect to *.

6, Show that a polynomial of degree $n \geq 1$ over a field F
has at most n roots in F.

