1a) The 2×2-matrices $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ in GL(2, **Z**₂) are those where either $a_{11} a_{22}=1$ and $a_{12} a_{21}=0$ or where $a_{11} a_{22}=0$ and $a_{12} a_{21}=1$. In the first case we get that $a_{11}=a_{22}=1$ and that a_{12} or $a_{21}=0$. In the second case we get that a_{11} or $a_{22}=0$ and that $a_{11}=a_{22}=1$. There are thus 3+3 matrices in GL(2, **Z**₂), such that GL(2, **Z**₂) is a group of order 6. b) We have two trivial normal subgroups, namely GL(2, **Z**₂) itself and the group with the neutral element $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. The other subgroups are of order 2 or 3 by Lagrange's theorem. By a corollary of the same theorem they are therefore cyclic as they are of prime order. They are thus generated by an element of order 2 o 3. There are exactly three elements of order two given by $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. None of these are in the center of GL(2, **Z**₂) as $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

Their conjugacy classes must therefore consist of more than one element, which means that none of these three elements can generate a normal subgroup. There are thus no normal

subgroups of order 2. The only subgroup or order 3 is the subgroup *H* consisting of $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

and the elements $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ of order 3. This is normal as their conjugates must have the same order. There is thus only normal subgroup in GL(2, \mathbb{Z}_2) apart from the trivial ones.

2a) It follows from the associative law for matrix multiplication that

$$\begin{pmatrix} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
for all $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, $B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$ in GL(2,F) and all $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ in S.

If we write $\pi_A: S \to S$ for the map which sends $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ to $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, then we thus

have that $\pi_{AB} = \pi_A \circ \pi_B$ such that π is a group action of GL(2, F) on S.

(b) As
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ the column vectors

$$\begin{pmatrix} 0\\1 \end{pmatrix}, \begin{pmatrix} 1\\0 \end{pmatrix} \text{ and } \begin{pmatrix} 1\\1 \end{pmatrix} \text{ are in the orbit of } \begin{pmatrix} 1\\0 \end{pmatrix} \text{ . These are all elements of the orbit as}
$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 0\\0 \end{pmatrix} \text{ would imply that } \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix} = \begin{pmatrix} 0\\0 \end{pmatrix} \text{ and } \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = 0.$$

$$2b) \text{ As } \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix} \text{ we see that the stabiliser of } \begin{pmatrix} 1\\0 \end{pmatrix} \text{ consists of the matrices}$$

$$in \text{ GL}(2, \mathbb{Z}_2) \text{ of the form } \begin{pmatrix} 1 & a_{12} \\ 0 & a_{22} \end{pmatrix} \text{. But then we get from } \begin{vmatrix} 1 & a_{12} \\ 0 & a_{22} \end{vmatrix} \neq 0 \text{ that } a_{22} = 1. \text{ The stabilizer}$$

$$of \begin{pmatrix} 1\\0 \end{pmatrix} \text{ will therefore consist of the two binary matrices } \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \text{ where } a = 0 \text{ or } 1.$$$$

3) We first verify that $\varphi^{-1}(J)$ is an additive subgroup of R_1 . Clearly $\varphi^{-1}(J) \neq \emptyset$ as $\varphi(0) = 0 \in J$. We have also if $a, b \in \varphi^{-1}(J)$, that $\varphi(a+b) = \varphi(a) + \varphi(b) \in J$ and $\varphi(-a) = -\varphi(a) \in J$ as J is an additive subgroup of R_2 . Hence $a, b \in \varphi^{-1}(J)$ implies that a+b, $-a \in \varphi^{-1}(J)$ such that $\varphi^{-1}(J)$ is an additive subgroup of R_1 by the subgroup criterion.

To see that $\varphi^{-1}(J)$ is an ideal of R_1 , suppose that $r \in R_1$ and $i \in \varphi^{-1}(J)$. Then $\varphi(r i) = \varphi(r) \varphi(i)$ with $\varphi(i) \in J$. But then as $\varphi(i)$ belong to the ideal J in R_2 , we get that $\varphi(r i) = \varphi(r) \varphi(i) \in J$ and $ri \in \varphi^{-1}(J)$. This shows that $\varphi^{-1}(J)$ is an ideal of R_1 .

4a) As $(a+b\sqrt{p})+(c+d\sqrt{p})=(a+c)+(b+d)\sqrt{p}$, $(a+b\sqrt{p})-(c+d\sqrt{p})=(a-c)+(b-d)\sqrt{p}$, and $(a+b\sqrt{p})(c+d\sqrt{p})=(ac+pbd)+(ad+bc)\sqrt{p}$), we see that $\mathbf{Q}(\sqrt{p})$ is closed under addition subtraction and multiplication. It is therefore a subring of $\mathbf{Q}(\sqrt{p})$ by the subring criterion. We have also the multiplicative inverse $(a-b\sqrt{p})/(a^2-pb^2)$ to any element $a+b\sqrt{p} \neq 0$ in $\mathbf{Q}(\sqrt{p})$. Hence $\mathbf{Q}(\sqrt{p})$ is a subfield of **R**.

4b) Suppose we had a ring isomorphism ϕ from $\mathbf{Q}(\sqrt{q})$ to $\mathbf{Q}(\sqrt{p})$ for two different primes primes *p*.and *q*. We may then find rational number *a* and *b* with $\phi(\sqrt{q}) = a + b\sqrt{p}$. But then $q = \phi(q) = (\phi(\sqrt{q})^2 = (a + b\sqrt{p})^2 = (a^2 + b^2 p) + 2ab\sqrt{p}$. If now $ab \neq 0$, then we would have that $\sqrt{p} \in \mathbf{Q}$. Otherwise, either a=0 and $\sqrt{pq} = \pm bp \in \mathbf{Q}$ or b=0 and $\sqrt{q} = \pm a \in \mathbf{Q}$. We have thus shown that one of \sqrt{p} , \sqrt{pq} or \sqrt{q} must be rational if $\mathbf{Q}(\sqrt{p})$ and $\mathbf{Q}(\sqrt{q})$ are isomorphic as fields. But if $r > \mathbf{I}$ is an square-free integer, then \sqrt{r} cannot be rational as $\sqrt{r} = m/n$ would lead to $rn^2 = m^2$ and that all exponents in the prime factorizations of rn^2 are even. But this is a contradiction. Hence $\mathbf{Q}(\sqrt{p})$ and $\mathbf{Q}(\sqrt{q})$ cannot be isomorphic as fields.

5] See Durbin's book 6) See Durbin's book