1a) The 2×2-matrices $\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ in $\operatorname{GL}\left(2, \mathbf{Z}_{2}\right)$ are those where either $a_{11} a_{22}=1$ and $a_{12} a_{21}=0$ or where $a_{11} a_{22}=0$ and $a_{12} a_{21}=1$. In the first case we get that $a_{11}=a_{22}=1$ and that a_{12} or $a_{21}=0$. In the second case we get that a_{11} or $a_{22}=0$ and that $a_{11}=a_{22}=1$. There are thus $3+3$ matrices in $\mathrm{GL}\left(2, \mathbf{Z}_{2}\right)$, such that $\mathrm{GL}\left(2, \mathbf{Z}_{2}\right)$ is a group of order 6.
b) We have two trivial normal subgroups, namely $\operatorname{GL}\left(2, \mathbf{Z}_{2}\right)$ itself and the group with the neutral element $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. The other subgroups are of order 2 or 3 by Lagrange's theorem. By a corollary of the same theorem they are therefore cyclic as they are of prime order. They are thus generated by an element of order 2 o 3 . There are exactly three elements of order two given by $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ and $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. None of these are in the center of $\operatorname{GL}\left(2, \mathbf{Z}_{2}\right)$ as $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \neq\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \neq\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$.

Their conjugacy classes must therefore consist of more than one element, which means that none of these three elements can generate a normal subgroup. There are thus no normal subgroups of order 2. The only subgroup or order 3 is the subgroup H consisting of $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and the elements $\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$ of order 3. This is normal as their conjugates must have the same order. There is thus only normal subgroup in $\operatorname{GL}\left(2, \mathbf{Z}_{2}\right)$ apart from the trivial ones.

2a) It follows from the associative law for matrix multiplication that
$\left(\left(\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right)\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)\left(\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right)\binom{x_{1}}{x_{2}}\right)\right.$
for all $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right), B=\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right)$ in $\operatorname{GL}(2, F)$ and all $\binom{x_{1}}{x_{2}}$ in S.
If we write $\pi_{A}: S \rightarrow S$ for the map which sends $\binom{x_{1}}{x_{2}}$ to $\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)\binom{x_{1}}{x_{2}}$, then we thus have that $\pi_{A B}=\pi_{A} \circ \pi_{B}$ such that π is a group action of $\operatorname{GL}(2, \boldsymbol{F})$ on S .
(b) As $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{1}{0}=\binom{0}{1},\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\binom{1}{0}=\binom{1}{0}$ and $\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)\binom{1}{0}=\binom{1}{1}$ the column vectors
$\binom{0}{1},\binom{1}{0}$ and $\binom{1}{1}$ are in the orbit of $\binom{1}{0}$.These are all elements of the orbit as $\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)\binom{1}{0}=\binom{0}{0}$ would imply that $\binom{a_{11}}{a_{21}}=\binom{0}{0}$ and $\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|=0$.

2b) As $\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)\binom{1}{0}=\binom{a_{11}}{a_{21}}$ we see that the stabiliser of $\binom{1}{0}$ consists of the matrices in $\operatorname{GL}\left(2, \mathbf{Z}_{2}\right)$ of the form $\left(\begin{array}{ll}1 & a_{12} \\ 0 & a_{22}\end{array}\right)$. But then we get from $\left|\begin{array}{ll}1 & a_{12} \\ 0 & a_{22}\end{array}\right| \neq 0$ that $a_{22}=1$. The stabilizer of $\binom{1}{0}$ will therefore consisr of the two binary matrices $\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)$ where $a=0$ or 1 .
3) We first verify that $\varphi^{-1}(J)$ is an additive subgroup of R_{1}. Clearly $\varphi^{-1}(J) \neq \varnothing$ as $\varphi(0)=0 \in J$. We have also if $a, b \in \varphi^{-1}(J)$, that $\varphi(a+b)=\varphi(a)+\varphi(b) \in J$ and $\varphi(-a)=-\varphi(a) \in J$ as J is an additive subgroup of R_{2}. Hence $a, b \in \varphi^{-1}(J)$ implies that $a+b,-a \in \varphi^{-1}(J)$ such that $\varphi^{-1}(J)$ is an additive subgroup of R_{1} by the subgroup criterion.
To see that $\varphi^{-1}(J)$ is an ideal of R_{1}, suppose that $r \in R_{1}$ and $i \in \varphi^{-1}(J)$. Then $\varphi(r i)=\varphi(r) \varphi(i)$ with $\varphi(i) \in J$. But then as $\varphi(i)$ belong to the ideal J in R_{2}, we get that $\varphi(r i)=\varphi(r) \varphi(i) \in J$ and $r i \in \varphi^{-1}(J)$. This shows that $\varphi^{-1}(J)$ is an ideal of R_{1}.

4a) As $(a+b \sqrt{p})+(c+d \sqrt{p})=(a+c)+(b+d) \sqrt{p}, \quad(a+b \sqrt{p})-(c+d \sqrt{p)}=(a-c)+(b-d) \sqrt{p}$, and $(a+b \sqrt{p})(c+d \sqrt{p})=(a c+p b d)+(a d+b c) \sqrt{p})$, we see that $\mathbf{Q}(\sqrt{p})$ is closed under addition subtraction and multiplication.It is therefore a subring of $\mathbf{Q}(\sqrt{p})$ by the subring criterion. We have also the multiplicative inverse $(a-b \sqrt{p}) /\left(a^{2}-p b^{2}\right)$ to any element $a+b \sqrt{p} \neq 0$ in $\mathbf{Q}(\sqrt{p})$. Hence $\mathbf{Q}(\sqrt{p})$ is a subfield of \mathbf{R}.

4b) Suppose we had a ring isomorphism ϕ from $\mathbf{Q}(\sqrt{q})$ to $\mathbf{Q}(\sqrt{p})$ for two different primes primes p.and q. We may then find rational number a and b with $\phi(\sqrt{q})=a+b \sqrt{p}$. But then $q=\phi(q)=\left(\phi(\sqrt{q})^{2}=(a+b \sqrt{p})^{2}=\left(a^{2}+b^{2} p\right)+2 a b \sqrt{p}\right.$. If now $a b \neq 0$, then we would have that $\sqrt{p} \in \mathbf{Q}$. Otherwise, either $a=0$ and $\sqrt{p q}= \pm b p \in \mathbf{Q}$ or $b=0$ and $\sqrt{q}= \pm a \in \mathbf{Q}$. We have thus shown that one of $\sqrt{p}, \sqrt{p q}$ or \sqrt{q} must be rational if $\mathbf{Q}(\sqrt{p})$ and $\mathbf{Q}(\sqrt{q})$ are isomorphic as fields. But if $r>\mathrm{I}$ is an square-free integer, then \sqrt{r} cannot be rational as $\sqrt{r}=m / n$ would lead to $r n^{2}=m^{2}$ and that all exponents in the prime factorizations of $r n^{2}$ are even. But this is a contradiction. Hence $\mathbf{Q}(\sqrt{p})$ and $\mathbf{Q}(\sqrt{q})$ cannot be isomorphic as fields.
5] See Durbin's book
6) See Durbin"s book

