MATHEMATICS

University of Gothenburg and Chalmers University of Technology
Examination in algebra : MMG 500 and MVE 150, 2017-06-08.
No books, written notes or any other aids are allowed.
Telephone. 031-772 3525

1a) Compute the product $\pi=\left(\begin{array}{ll}1 & 2\end{array}\right)(23)(34)$ in S_{4}.
b) Describe the permutations in the cyclic subgroup generated by π.

The permutations should be written in cycle form.

$$
\begin{aligned}
& 2 \text { Let } g, h \text { be two elements in a finite group. Show that } g h \text { and } h g \text { have } 4 \mathrm{p} \\
& \text { the same order. }
\end{aligned}
$$

3.Determine the zero divisors and invertible elements in \mathbf{Z}_{10}.

4 Let p be a prime.
a) Show that the equation $x^{p}-1=0$ has no other root than 1 in \mathbf{Z}_{p}.
b) Can the equation $x^{p}-a=0$ have more than one root in \mathbf{Z}_{p} for other elements $a \neq 1$ in \mathbf{Z}_{p} ?
5. Let $*: G \times G \rightarrow G$ be an associative binary operation on a set G.
a) Show that $(G, *)$ has at most one neutral element.
b) Show that each element of G has at most one inverse with respect to $*$.
6. Show that any finite integral domain is a field.

All claims that are made must be motivated.

