Brief solutions to examination in algebra 2017-06-08. (MMG 500-MVE 150)

1a). $\pi=(12)\left(\begin{array}{ll}2 & 3\end{array}\right)\left(\begin{array}{l}3\end{array}\right)=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \\ 1 & 3 & 4 & 2 \\ 2 & 3 & 4 & 1\end{array}\right)=(1234)$
1b) $(1234)^{2}=(13)(24), \quad(1234)^{3}=(1432)$ and $(1234)^{4}=i d$.
The group generated by π will thus have $\{i d,(1234),(13)(24),(1432)\}$ as underlying set.

2 If $k \in \mathrm{~N}$, then $h(g h)^{k} h^{-1}=(h g)^{k} h h^{-1}$ by the associative law. As $h h^{-1}=e$, we thus get $h(g h)^{k} h^{-1}=(h g)^{k}$. In particular, if $(g h)^{k}=e$, then $(h g)^{k}=h e h^{-1}=e$. Conversely, by symmetry $(h g)^{k}=e \Rightarrow(g h)^{k}=e$. The list of exponents of all $k \in \mathrm{~N}$ with $(g h)^{k}=e$ will therefore coincide with the list of all exponents with $(h g)^{k}=e$. So $g h$ and $h g$ have the same order.
3. Let $[k]$ be the congruence class $(\bmod 10)$ of $k \in \mathbf{Z}$. Then, [2], [4], [5], [6] and [8] are zero divisors in \mathbf{Z}_{10} as [2] [5] $=[4][5]=[6][5]=[8][5]=[0]$, while [1], [3], [7], [9] are invertible as $[1]^{2}=[1],[3][7]=[1]$ and $[9]^{2}=[1]$. So any element $[k] \neq[0]$ is either a zero divisor or invertible in \mathbf{Z}_{10}.
Further, no element $[k]$ in \mathbf{Z}_{10} can be both a zero divisor and invertible, Indeed, if $[j][k]=[0]$ and $[k][l]=[1]$, then $[j]=[j][1]=[j]([k][l])=([j][k])[l]=[0][l]=[0]$. There are thus no further zero divisors or invertible elements in \mathbf{Z}_{10}.

4 The elements $\neq 0$ in \mathbf{Z}_{p} form a multiplicative group with $p-1$ elements as \mathbf{Z}_{p} is a field. By a corollary of Lagrange's theorem we have thus that $x^{p-1}=1$ for all $x \neq 0$. in \mathbf{Z}_{p}. Hence $x^{p}=\mathrm{x}$ for all $x \in \mathbf{Z}_{p}$. The equation $x^{p}-a=0$ is thus equivalent to the equation $x-a=0$. This means that for each $a \in \mathbf{Z}_{p}$, the equation $x^{p}-a=0$ has exactly one solution in \mathbf{Z}_{p}, namely $x=a$.
5. See Durbin's book
6. See Durbin's book

