MATHEMATICS

Univ. of Gothenburg and Chalmers University of Technology Examination in algebra : MMG500 and MVE 150, 2018-06-01. No books, written notes or any other aids are allowed. Telephone 031-772 5325.

1) Let ϕ be a homomorphism from the multiplicative group <i>G</i> to the	3p
additive group $\mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_4 \times \mathbb{Z}_6$. Prove that $g^{12} \in \ker \phi$ for any $g \in G$.	

2). Prove that there is an element of order 990 in S_{30} .	4p
3) The center of a ring <i>R</i> is the subset $Z(R)$ of all elements <i>x</i> such that $xy = yx$ for all elements <i>y</i> in <i>R</i> . Show that $Z(R)$ is a subring.	4p

4) A bead is placed at each of the eight vertices of a cube, and each4pbead is to be painted either red or blue. Under equivalence relativeto the group of rotations of the cube, how many distinguishablepatterns are there?

5. Formulate and prove Lagrange's theorem.	5p
(You may use general results from set theory, but any result on	
cosets that is needed should be proved.)	

6, Show that a polynomial of degree $n \ge 1$ over a field F	4p
has at most <i>n</i> roots in <i>F</i> .	