Solutions to examination in algebra

1) Let $g \in G$ and $\phi(g)=\left([a]_{2},[b]_{3},[c]_{4},[d]_{6}\right)$. Then $\phi\left(g^{12}\right)=12 \phi(g)=$ $\left(12[a]_{2}, 12[b]_{3}, 12[c]_{4}, 12[d]_{6}\right)=\left([0]_{2},[0]_{3},[0]_{4},[0]_{6}\right)$ such that $g^{12} \in \operatorname{ker} \phi$ for every $g \in G$.
2) We know by the fundamental theorem of abelian groups that there is a bijection between factorisations of 200 into prime powers (up to ordering) and isomorphism classes of abelian groups of order 200 . There are six such factorizations of 200 , namely $8 \times 25,4 \times 2 \times 25,2 \times 2 \times 2 \times 25,8 \times 5 \times 5$, $4 \times 2 \times 5 \times 5$ and $2 \times 2 \times 2 \times 5 \times 5$.
There are thus six isomorphism classes of abelian groups of order 200.
They are represented by $\mathbf{Z}_{8} \times \mathbf{Z}_{25}, \mathbf{Z}_{4} \times \mathbf{Z}_{2} \times \mathbf{Z}_{25}, \mathbf{Z}_{2} \times \mathbf{Z}_{2} \times \mathbf{Z}_{2} \times \mathbf{Z}_{25}, \mathbf{Z}_{8} \times \mathbf{Z}_{5} \times \mathbf{Z}_{5}$, $\mathbf{Z}_{4} \times \mathbf{Z}_{2} \times \mathbf{Z}_{5} \times \mathbf{Z}_{5}$ and $\mathbf{Z}_{2} \times \mathbf{Z}_{2} \times \mathbf{Z}_{2} \times \mathbf{Z}_{5} \times \mathbf{Z}_{5}$.
3) We use the subring criterion. First, $0 \in \mathrm{Z}(R)$ as $0 r=0=r 0$ for all $r \in R$.

Next, let $z_{1}, z_{2} \in \mathrm{Z}(R)$ and $r \in R$. Then,
$\left(z_{1}+z_{2}\right) r=z_{1} r+z_{1} r=r z_{1}+r z_{2}=r\left(z_{1}+z_{2}\right)$
$\left(-z_{1}\right) r=-z_{1} r=-r z_{1}=r\left(-z_{1}\right)$
$\left(z_{1} z_{2}\right) r=z_{1}\left(z_{2} r\right)=z_{1}\left(r z_{2}\right)=\left(r z_{1}\right) z_{2}=\left(r z_{1}\right) z_{2}=r\left(z_{1} z_{2}\right)$.
Hence $z_{1}+z_{2},-z_{1}, z_{1} z_{2} \in \mathbf{Z}(R)$ for all $z_{1}, z_{2} \in \mathbf{Z}(R)$, which shows that $\mathbf{Z}(R)$ is a subring of R
4) There are 24 rotations of the cube which form a group G acting on the set S of 2-colourings of the vertices. For $g \in G$, let $\Psi(g)$ be the number of 2 -colourings preserved by g. The number of inequivalent 2-colourings of the vertices is then $\frac{1}{\mid G} \sum_{g \in G} \Psi(g)$ by Burnside's lemma. Also, $\Psi(g)=2^{n(g)}$ for the number $n(g)$ of orbits of the action of $\langle g\rangle$ on the set V of vertices.

The 24 rotations in G are described in Example 57.3 in Durbin's book.

1. The identity.
2. Three 180° rotations around lines joining the centers of opposite faces.
3. Six 90° rotations around lines joining the centers of opposite faces.
4. Six 180° rotations around lines joining the midpoints of opposite edges.

5 . Eight 120° rotations around lines joining opposite vertices.

For g of type 1, 2, 3, 4 resp. 5 we have the following $\langle g\rangle-$ orbits on V.

1. Eight orbits of length 1.
2. Four orbits of length 2 .
3. Two orbits of length 4.
4. Four orbits of length 2.
5. Two orbits of length 1 and two orbits of length 3 .

Hence $\Psi(g)=2^{8}, 2^{4}, 2^{2}, 2^{4}$ resp. 2^{4}. The number of inequivalent
2 -colourings of the vertices is therefore
$\frac{1}{24}\left(1 \times 2^{8}+3 \times 2^{4}+6 \times 2^{2}+6 \times 2^{4}+8 \times 2^{4}\right)=\frac{1}{24}\left(2^{8}+17 \times 2^{4}+6 \times 2^{2}\right)=\underline{23}$
5) See sections 16 and 17 in Durbin's book.
6) See section 35 in Durbin's book.

