1a) $\mathbf{Z}_{6} \times \mathbf{Z}_{2}$ is abelian of order 12 , but not cyclic as $6 a=0$ for every $a \in \mathbf{Z}_{6} \times \mathbf{Z}_{2}$.
b) $S_{3} \times \mathbf{Z}_{2}$ is non-abelian of order 12 as S_{3} is non-abelian of order 6 .

2a) $\varphi(\tau)^{2}=\varphi\left(\tau^{2}\right)=\varphi(\mathrm{id})=e$ as φ is a homomorphism. As $o(H)=3$, we have also that $\varphi(\tau)^{3}=e$ by a theorem. So $\varphi(\tau)=e$ such that τ of order one.
b) As any element in S_{n} is a product of transpositions we deduce from a) that $\operatorname{Im} \varphi=\{e\}$ for any homomorphism $\varphi: S_{n} \rightarrow H$ to a group of order 3. But the quotient map $\varphi: S_{n} \rightarrow S_{n} / N$ of a normal subgroup is always surjective. There can thus be no normal subgroup of index 3 in S_{n} as otherwise we would have a contradiction.
3. We first note that $(2 a)^{2}+3(2 b)^{2} \equiv 0(\bmod 4)$ as $(2 a)^{2} \equiv(2 b)^{2} \equiv 0(\bmod 4)$ when $2 a$ and $2 b$ are even and as $(2 a)^{2} \equiv(2 b)^{2} \equiv 1(\bmod 4)$ when $2 a$ and $2 b$ are odd. Hence $N(z):=|z|^{2}=a^{2}+3 b^{2} \in \mathbf{N}$ for any $z=a+b \sqrt{ } 3 i \in R$ different from 0 . So if z is a unit in R with inverse w, then $N(z)=1$ as $N(z) N(w)=N(z w)=N(1)=1$. Hence $(2 a)^{2}+3(2 b)^{2}=N(2 \mathrm{z})=N(2) \mathrm{N}(z)=4$, which implies that $(2 a)^{2}=4$ and $(2 b)^{2}=0$ or that $(2 a)^{2}=(2 b)^{2}=1$. There are thus at most six possible units given by ± 1 and $\pm 1 / 2 \pm \sqrt{3} i / 2$. These are all units in R as they correspond to the six roots of the equation $\mathrm{z}^{6}=1$.

4a) α belongs to the multiplicative group $U(K)=K \backslash\{0\}$ of order 3. Hence $\alpha^{3}=1$ and $\alpha^{2017}=\alpha^{2016} \alpha=\left(\alpha^{3}\right)^{672} \alpha=\alpha$.
b) $\alpha^{2018}+\alpha^{2017}+1=\alpha^{2017} \alpha+\alpha+1=\alpha^{2}+\alpha+1=\left(\alpha^{3}-1\right) /(\alpha-1)=0$ as $\alpha \notin\{0.1\}$.
c) It follows from the factor theorem that $x^{2018}+x^{2017}+1$ is divisible by $x-\alpha$ as it has a zero at $\alpha \in K$. The polynomial is thus not irreducible over K
5. See Durbin's book.
6. See Durbin's book.

