Solutions to exam in algebra MMG500

2a) $\varphi(\tau)^2 = \varphi(\tau^2) = \varphi(id) = e$ as φ is a homomorphism. As o(H) = 3, we have also that $\varphi(\tau)^3 = e$ by a theorem. So $\varphi(\tau) = e$ such that τ of order one.

b) As any element in S_n is a product of transpositions we deduce from a) that Im $\varphi = \{e\}$ for any homomorphism $\varphi:S_n \rightarrow H$ to a group of order 3. But the quotient map $\varphi:S_n \rightarrow S_n/N$ of a normal subgroup is always surjective. There can thus be no normal subgroup of index 3 in S_n as otherwise we would have a contradiction.

3. We first note that $(2a)^2+3(2b)^2\equiv 0 \pmod{4}$ as $(2a)^2\equiv (2b)^2\equiv 0 \pmod{4}$ when 2a and 2b are even and as $(2a)^2\equiv (2b)^2\equiv 1 \pmod{4}$ when 2a and 2b are odd. Hence $N(z):=|z|^2=a^2+3b^2\in \mathbb{N}$ for any $z=a+b\sqrt{3}i\in R$ different from 0. So if z is a unit in R with inverse w, then N(z) = 1 as N(z)N(w)=N(zw)=N(1)=1. Hence $(2a)^2+3(2b)^2=N(2z)=N(2)N(z)=4$, which implies that $(2a)^2=4$ and $(2b)^2=0$ or that $(2a)^2=(2b)^2=1$. There are thus at most six possible units given by ± 1 and $\pm 1/2\pm\sqrt{3}i/2$. These are all units in R as they correspond to the six roots of the equation $z^6=1$.

4a) α belongs to the multiplicative group $U(K) = K \setminus \{0\}$ of order 3. Hence $\alpha^3 = 1$ and $\alpha^{2017} = \alpha^{2016} \alpha = (\alpha^3)^{672} \alpha = \alpha$. b) $\alpha^{2018} + \alpha^{2017} + 1 = \alpha^{2017} \alpha + \alpha + 1 = \alpha^2 + \alpha + 1 = (\alpha^3 - 1)/(\alpha - 1) = 0$ as $\alpha \notin \{0.1\}$.

c) It follows from the factor theorem that $x^{2018}+x^{2017}+1$ is divisible by $x-\alpha$ as it has a zero at $\alpha \in K$. The polynomial is thus not irreducible over K

5. See Durbin's book.

6. See Durbin's book.