MATHEMATICS

Univ. of Gothenburg and Chalmers University of Technology Examination in algebra : MMG500 and MVE 150, 2018-03-16. No aids are allowed. Telephone 031-772 5325.

1a) Let $\sigma = (123)$ and $\tau = (145)$. Compute the commutator $\sigma \tau \sigma^{-1} \tau^{-1}$ in S_5 .	3р
(The answer should be given in cycle form.)	
b) Show that $\sigma \tau \sigma^{-1} \tau^{-1}$ belongs to the subgroup A_5 of even cycles in S_5 .	1p
2a) Let ϕ be a homomorphism from Z to a finite group <i>G</i> of order <i>n</i> .	3р
Prove that $\langle n \rangle \subseteq \ker \phi$.	
b) Show that ker $\phi = \langle n \rangle$ if and only if ϕ is surjective.	2p
3. Show that the rings $R = \mathbb{Z}[\sqrt{2}] = \{a+b\sqrt{2}: a, b \in \mathbb{Z}\}$ and	4p

$$S = \{ \begin{pmatrix} a & 2b \\ b & a \end{pmatrix} : a, b \in \mathbb{Z} \}$$
 are isomorphic.

4a) Verify that $1/(3+2\sqrt{2}) \in \mathbb{Z}[\sqrt{2}]$.	2p
1	

b) Prove that
$$R = \mathbb{Z}[\sqrt{2}]$$
 has infinitely many units. 2p

6. Prove that any ideal of a polynomial ring $F[x]$ over a field F	4p
is a principal ideal.	

The theorems in Durbin's book may be used to solve exercises 1–4, but all claims that are made must be motivated.