MATHEMATICS

Univ. of Gothenburg and Chalmers University of Technology
Examination in algebra : MMG500 and MVE 150, 2018-03-16.
No aids are allowed. Telephone 031-772 5325.

1a) Let $\sigma=(123)$ and $\tau=(145)$. Compute the commutator $\sigma \tau \sigma^{-1} \tau^{-1}$ in S_{5}. 3p
(The answer should be given in cycle form.)
b) Show that $\sigma \tau \sigma^{-1} \tau^{-1}$ belongs to the subgroup A_{5} of even cycles in S_{5}.

1 p

2a) Let ϕ be a homomorphism from \mathbf{Z} to a finite group G of order n. 3p Prove that $\langle n\rangle \subseteq \operatorname{ker} \phi$.
b) Show that ker $\phi=\langle n\rangle$ if and only if ϕ is surjective.

2p
3. Show that the rings $R=\mathbf{Z}[\sqrt{ } 2]=\{a+b \sqrt{2}$: $a, b \in \mathbf{Z}\}$ and
$S=\left\{\left(\begin{array}{ll}a & 2 b \\ b & a\end{array}\right): a, b \in \mathbf{Z}\right\}$ are isomorphic.

4a) Verify that $1 /(3+2 \sqrt{ } 2) \in \mathbf{Z}[\sqrt{ } 2]$. $2 p$
b) Prove that $R=\mathbf{Z}[\sqrt{ } 2]$ has infinitely many units. 2 p
5. Formulate and prove the fundamental homomorphism $4 p$ theorem for groups.
6. Prove that any ideal of a polynomial ring $F[x]$ over a field F 4p is a principal ideal.

The theorems in Durbin's book may be used to solve exercises 1-4, but all claims that are made must be motivated.

