Solutions to examination in algebra: MMG500 and MVE150

 2018-03-16.1a) If $\sigma=(123)$ and $\tau=(145)$, then $\sigma^{-1}=(132), \tau^{-1}=(154)$ and

$$
\sigma \tau \sigma^{-1} \tau^{-1}=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
5 & 2 & 3 & 1 & 4 \\
5 & 1 & 2 & 3 & 4 \\
1 & 4 & 2 & 3 & 5 \\
2 & 4 & 3 & 1 & 5
\end{array}\right)=(124)
$$

b) Any 3-cycle $(a b c)=(a c)(a b)$. In particular, $\sigma \tau \sigma^{-1} \tau^{-1}=(14)(12)$ is even.

2a) For $n k \in\langle n\rangle$, then $\phi(n k)=\phi(k)^{n}$ by a counting rule for homomorphisms. We have also by a corollary of Lagrange's theorem that $\phi(k)^{n}=e$ as $\phi(k)$ belong to a group of order n. Hence $\phi(n k)=e$ for all $k \in \mathbf{Z}$, thereby proving the assertion.

2b) For $l, m \in \mathbf{Z}$ with $[l]_{n}=[m]_{n}$, then $\phi(l) \phi(m)^{-1}=\phi(l-m)=e$ as $\langle n\rangle \subseteq \operatorname{ker} \phi$. There is thus a well defined map $\theta: \mathbf{Z}_{n} \rightarrow G$, which sends $[m]_{n}$ to $\phi(m)$. This map is a homomorphism as $\theta\left([k]_{n} \oplus[m]_{n}\right)=\theta\left([k+m]_{n}\right)=\phi(k+m)=\phi(k) \phi(m)=\theta\left([k]_{n}\right) \theta\left([m]_{n}\right)$. On using that ker $\theta=\operatorname{ker} \phi /\langle n\rangle, \operatorname{im} \theta=\operatorname{im} \phi$ and $o\left(\mathbf{Z}_{n}\right)=o(G)$, we have thus $\operatorname{ker} \phi=\langle n\rangle \Leftrightarrow \operatorname{ker} \theta=\left\{[0]_{n}\right\} \Leftrightarrow \theta$ is one-to one $\Leftrightarrow \theta$ is onto $\Leftrightarrow \phi$ is surjective.
3) Let $\theta: R \rightarrow S$ be the bijective map which sends $a+b \sqrt{ } 2$ to $\left(\begin{array}{cc}a & 2 b \\ b & a\end{array}\right)$. Then $(a+b \sqrt{ } 2)+(c+d \sqrt{ } 2)=(a+c)+(b+d) \sqrt{ } 2$ is sent to $\left(\begin{array}{cc}a+c & 2(b+d) \\ b+d & a+c\end{array}\right)=\left(\begin{array}{cc}a & 2 b \\ b & a\end{array}\right)+\left(\begin{array}{cc}c & 2 d \\ d & c\end{array}\right)$ while $(a+b \sqrt{ } 2)(c+d \sqrt{ } 2)=(a c+2 b d)+(a d+b c) \sqrt{ } 2$ is sent to $\left(\begin{array}{cc}a c+2 b d & 2(a d+b c) \\ a d+b c & a c+2 b d\end{array}\right)=$ $=\left(\begin{array}{cc}a c+2 b d & 2(a d+b c) \\ b c+a d & 2 b d+a c\end{array}\right)=\left(\begin{array}{cc}a & 2 b \\ b & a\end{array}\right)\left(\begin{array}{cc}c & 2 d \\ d & c\end{array}\right)$. Hence θ is additive and mulitplicative, as was to be proved.

4a) As $(3+2 \sqrt{ } 2)(3-2 \sqrt{ } 2)=3^{2}-(2 \sqrt{ } 2)^{2}=9-8=1$, we get that $1 /(3+2 \sqrt{ } 2)=3-2 \sqrt{ } 2$.
b) We first note that $(3+2 \sqrt{ } 2)^{n}(3-2 \sqrt{ } 2)^{n}=((3+2 \sqrt{ } 2)(3-2 \sqrt{ } 2))^{n}=1^{n}=1$. Hence as $3+2 \sqrt{ } 2>1$, we have a strictly increasing sequence $(3+2 \sqrt{ } 2)^{n}, n \in \mathrm{~N}$ of units in $R=\mathbf{Z}[\sqrt{ } 2]$.
5) See theorem 23.1 in Durbin's book.
6) See theorem 40.3 in Durbin's book.

