
1 Introduction to modeling by ordinary di¤erential equa-
tions, by PDE and by stochastic processes.

The course has a goal to give a relatively elementary and "problem
oriented" introduction to three main (from the point of view of the
lecturer) approaches to mathematical modeling. The course supplies
examples and exercises connecting theory with mathematical models
mainly in biology but also in chemistry and in physics.
In the �rst lecture we are going to use chemical kinetics as the

main example for demonstrating various techniques for mathemati-
cal modeling. The word kinetics comes from Greek �kinetikos�that
means �moving�and means both microscopic interactions and the
spacial transport of particles.

1.1 Modeling of chemical reactions by ODE. Law of mass
action.

Law of mass action. The rate of reactions is proportional to the
active concentrations of the reactants.
To illustrate and make clear the meaning of the law consider the

irreversible reaction described by

A+B ! C:

If we denote concentrations of reagents by A, B, C the law of
mass action says that

dA

dt
= �k AB;

where t denotes time and the constant k is called the rate con-
stant of this reaction.
Other two equations corresponding this reaction are

dB

dt
= �k AB; dC

dt
= k AB:

There are as many equations as reactants. If the reaction is
reversible with forward and backward rate constants k1 and k�1
respectively,

A+B
k1
�
k�1

C =) dA

dt
= �k 1AB +�k �1C:
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The fact that one molecule of A combines with a one molecule of
B to form C means that reaction is a bimolecular one: these are by
far the commonest.
Most of chemical reactions in biology include reactants of dif-

ferent types having di¤erent functions. It is typical that a part of
reactants serve as catalysts or inhibitors.They are usually proteins.
Such proteins and are called enzymes. They act remarkably e¢ cient
in that they operate at very low concentrations. Enzymes react very
selectively in combination with de�nite compounds called substrates
(or ligands) and therefore are highly speci�c.
Enzyme-substrate-product Michaelis Menten reaction= (1913) is

the following model. Free enzyme and substrate �rst combine via a
reversible reaction a complex which in turn breaks down irreversibly
to form the free enzyme again and a product. It can be represented
by the following diagram:

S + E
k1
�
k�1

SE

SE
k2! P + E: (1)

We can now use the law of mass action for writing down a system
of equations for Michaelis Menten reaction

ds

dt
= �k1s e+ k�1c; (2)

de

dt
= �k1s e+ (k�1 + k2)c;

dc

dt
= k1s e� (k�1 + k2)c;

dp

dt
= k2c;

where c - concentration of the complex SE, s - concentration of
S, e - concentration of E, p -concentration of the product.
Relevant initial conditions at time t = 0 are c(0) = 0, p(0) = 0,

concentrations e(0) and s(0) are given and non-zero.
Adding equations for de

dt
and dc

dt
we get a conservation law for e

and c namely
e+ c = const = e(0) = e0 (3)
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So if c is known the conservation law gives e and the equation
for dp

dt
gives p by integration:

p(t) = k2

Z t

0

c(t0)dt0 (4)

These observations imply a system of two equations for s and c
only, namely

ds

dt
= �k1e0 s+ (k1s+ k�1)c; (5)

dc

dt
= �k1 e0 s� (k1s+ k�1 + k2)c (6)

with initial conditions s(0) = s0, c(0) = 0. This system cannot
be solved analytically, but can be analyzed and in many interesting
cases can be approximately reduced to one also non-linear equation
that can be solved analytically. This reduction is done not for math-
ematical reasons themselves (the system is rather simple), but for
clarifying typical qualitative properties of the reaction.
Before analyzing 5 and 6 the equations must be written in a non-

dimensional form. This is crucial for the analysis of any mathemati-
cal model. Qualitatively it means that relative magnitude of various
terms in the equations must be made clear.This only can be done
with con�dence if all quantities are made dimensionless otherwise
the words large and small have no relevance. Therefore dimensions
analysis and scaling of a problem is a general requirement for a
proper mathematical modeling.
For example in 5 each term must have dimension concentration�

(time)�1. Thus k1 must have dimension concentration�1�(time)�1
whereas k�1 must have dimension (time)�1. A non-dimensional
model is independent of the speci�c system of units used. Intro-
duce the non-dimensional quantities

� = k1e0t; � = k2=k1s0; � = (k�1 + k2)=k1s0;

x(�) =
s(t)

s0
; y(�) =

c(t)

e0
; " =

e0
s0
:

Substituting new dimensionless variables into the system of equa-
tions we get the following non-dimensional system for x(�) and
y(�):
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dx

d�
= �x+ (x+ �� �)y;

"
dy

d�
= x� (x+ �)y;

x(0) = 1; y(0) = 0: (7)

In most biological situations the ratio of initial enzyme to initial
substrate is very small that is " = e0

s0
� 1: So the system (7) is a

singular perturbation problem which is recognized here by the fact
that setting " = 0 the order of the system is reduced but the initial
conditions cannot in general both be satis�ed. If we try to do so we
get

y =
x

x+ �
; =)

dx

d�
=
��x
x+ �

; =)

x+ � lnx = 1� �� (8)

where x satis�es the �rst initial condition in 7 but y does not satisfy
the initial condition. The equations (8) are called the Michaelis-
Menten kinetic law.

1.2 Asymptotic of solutions to ODE

The very unsatisfactory argument which is frequently used to get the
dimensional form of the Michaelis-Menten kinetic law is the follow-
ing. Since the enzyme is present only in small quantities de=dt t 0
and so from the conservation law e + c = const it follows that
dc=dt t 0 and therefore from 6 it follows c = k1e0s

k1s+k�1+k2
and the

following dimensional form of the Michaelis-Menten kinetic law:

ds

dt
=
�k2e0s
K + s

; c =
k1e0s

k1s+ k�1 + k2
; K =

k�1 + k2
k1

: (9)

The disadvantage of this naive approach is that the quantitative
criteria " = e0

s0
� 1 for validity of this approximation is lost and also

no way of resolving the problem with initial data can be suggested.
Therefore the rigorous treating of the asymptotics of solutions

to di¤erential equations is an important aspect in mathematical
modeling. One chapter of the course will be devoted to asymptotic
methods.
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1.3 Stationary states and periodic solutions

It is easy to see by numerics that solutions to the system 7 go to a
"stable" stationary state independently of initial data. There might
be in general stationary states that are not stable: the system runs
away from such a state if being turned a bit away from it. A typical
example for this frommechanics is the upper position of a pendelum.
It is a stationary state, but evidently unstable. There is a well de-
veloped theory of stability for stationary states of dynamic systems
that we are going to study in the course. Relative positions and sta-
bility properties of stationary points of a dynamic system determine
in many respects also the global properties of the system.
It is now believed in the light of experimental evidence that many

cellular processes tend not to stationary states but to oscillatory
regimes, that are periodic solutions and it is intrinsic rhythm be-
havior which provides a robust dynamic basis for self-organization
in cellular development. Material on oscillatory and in particular
on periodical solutions to ordinary di¤erential equations constitute
another chapter of the course.
We discuss for pedagogical reasons the following model system of

reactions called Brusselator (Prigogine 1977):

A
k1
�
k�1

X

B +X
k2
�
k�2

Y +D

2X + Y
k3
�
k�3

3X

X
k4
�
k�4

E

Here reactants A, B, D, E are kept constant, so the system is
opened and the only intermediates are X and Y .

dX

dt
= k1A� k2BX + k3Y X2 � k4X

dY

dt
= k2BX � k3Y X2

Prigogines Brusselator

The non-dimensional form of this system is
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du

d�
= 1� (b+ 1)u+ a u2v

dv

d�
= bu� a u2v

We will consider a slightly simpli�ed model introduced by Quan
et. al.(2002):

A
k1
�
k�1

X

B +X
k2! Y +D

2X + Y
k3
�!3X

Quans model

dX

dt
= k1A� k�1X + k3X2Y (10)

dY

dt
= k2B � k3X2Y

Quans model

The non-dimensional form of this system is

du

d�
= a� u+ u2v

dv

d�
= b� u2v (11)

where u = �X, v = �Y , � =
p
k3=k�1; � = k�1t. The amount of

parameters in the system is reduced to two:a = (k1=k�1)
p
k3=k�1A;

b =
p
k2=k�1B.

Properties of the system depends essentially on what kind of
stationary points there are in the phase plane (u; v).By stationary
points we mean points where du

d�
= 0, dv

d�
= 0 because of the systems
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of equations, namely in this particular case right hand sides are zero:
a� u+ u2v = 0 and b� u2v = 0.
The system has just one stationary point (u0; v0) :

u0 = a+ b; v0 =
b

(a+ b)2
:

The graph below shows the directions of velocities in the phase
plane for the case a = b = 0:5
with the stable stationary point u0 = 1; v0 = 0:5.
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Another example is for a = 0:1; b = 0:2 ,
with the unstable stationary point u0 = 0:3; v0 = 0:2=(0:1 +

0:2)2 = 2: 222 2
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We consider the linear approximation of the right hand sides
a � u + u2v and b � u2v by �rst terms of the Taylor expansion
around the stationary point (u0,v0) and the corresponding linear
system of ODE for deviations x = u � u0; y = v � v0 of u; v from
(u0; v0),. In our particular case it looks as

d

d�

�
x
y

�
=

�
b�a
b+a

(a+ b)2

� 2b
b+a

�(a+ b)2
� �

x
y

�
: (12)

This approximate system helps to investigate the stability properties
of the stationary point.
The stationary point is called stable if for any initial data close

to it the solution will stay close to it. There is an algebraic the-
ory on stability of linear systems of ODE and also a theory about
connection between the stability properties of stationary points to
non-linear systems of ODE and stability of their linear approxima-
tions. In many times (but not always!) the phase portraits are
locally similar.
Properties of linear system in the form d�!r

dt
= A�!r the stabil-

ity of the stationary point at the origin is totally determined by
eigenvalues and eigenvectors of the matrix A. Eigenvalues are so-
lutions of the characteristic equation det(A� �I) = 0. Eigenvalues
with positive real parts are the sign of instability. In our example
with 2-dimensional system the characteristic equation has the form
�2 � Trace(A) + det(A) = 0. The determinant of the matrix A 12
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is (a + b)2 > 0 that means that real parts of the eigenvalues are
the same. The stability is therefore determined by the trace of the
matrix, the sum of eigenvalues:
Trace(A) = (b�a)

(b+a)
�(a+b)2 = (a+b)2

�
b�a
(b+a)3

� 1
�
= (a+b)2(��

1):

� = b�a
(b+a)3

= 1�a=b
b2(1+a=b)3

:

When the trace is negative, the stationary point is stable. There-
fore for � < 1 the stationary point is stable and for the positive -
unstable. Looking on examples above we see that for a = 0:5;
b = 0:5, � = 0 < 1 (stationary point is stable) ; for a = 0:1, b = 0:2,
� = 3: 703 7 > 1 (stationary point is unstable).
More re�ned analysis shows that solutions of this nonlinear sys-

tem cannot go in�nitely far from some neighborhood of (u0; v0).
A theorem by Poincare and Bendixson implies that in the case of
two-dimensional systems of ODE the presence of a unique unstable
stationary point in a domain that cannot be left by solutions im-
plies the existence of a periodical (oscillating) solution. Therefore
the system of equations 10 has a periodic solution for � > 1:

1.4 Stochastic models and processes.

The analysis of chemical kinetics above is based on the law of mass
action. It requires that s 104 molecules take part in a reaction. It is
not always the case in biology. The reason is that a chemical reaction
is a stochastic process that happens with some probability. If we
have a large number of well mixed reactants the amount of reacting
molecules will be proportional to their densities (the law of mass
action). If the number of of molecules participating in the reaction
is small one cannot longer describe the system in a deterministic
macroscopic fashion. Rather one describes the system as stochastic
and microscopic by the probability of having nx of X and ny of Y at
time t in terms of a probability distribution function P (nx; ny; t).
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The stochastic kinetics can be depicted by the scheme below:

&

� (n� 1;m+ 1)
k1nA
�

k�1(n)
(n;m+ 1)

k1nA
�

k�1(n+1)
(n+ 1;m+ 1)

& &k3(n�2)(n�1)(m+1) "k2nB &k3(n�1)n(m+1) &

� (n� 1;m)
k1nA
�

k�1(n)
(n;m)

k1nA
�

k�1(n+1)
(n+ 1;m) �

&k3(n�2)(n�1)(m) "k2nB &k3(n�1)n(m+1) &

� (n;m� 1)
k1nA
�

k�1(n+1)
(n+ 1;m� 1) �

&

:

At any time t the system has the numbers (nx; ny) of X and Y
molecules. The random variables nx and ny can change only by 1
or �1. Therefore, the stochastic kinetics resembles a random walk
on the two-dimensional lattice.
From each state (a point in the lattice) the system can undergo

transition governed by speci�c rate constants to any of four possible
neighboring states. Therefore writing the kinetic equation for this
stochastic system is straightforward:

dP (nx; ny)

dt
=

�[k1nA + k�1nx + k2nB + k3nx(nx � 1)ny]P (nx; ny)
+k1nAP (nx � 1; ny) + k2nBP (nx; ny � 1)
+k�1(nx + 1)P (nx + 1; ny)

+k3(nx � 1)(nx � 2)(ny + 1)P (nx � 1; ny + 1) (13)

Stochastic processes of such type are called the birth-death processes
in the theory of probability.They are also known as stochastic com-
partmental systems in biology.
The system 13 is a large (or inde�nite!) system of ordinary dif-

ferential equations that can in principle be solved straightforwardly
by a generic numerical method. On the other hand it might become
very time and memory consuming even for a modern computer.

1.5 Fokker-Planck equation and other PDE models

We can consider a smooth probability distribution function P (nx; ny)
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de�ned not only in the nodes with integer coordinates but in the
whole plane.

If the function P (nx; ny) is smooth we can notice that

P (nx + 1; ny)� P (nx � 1; ny) t 2
@P (nx; ny)

@nx

P (nx; ny + 1)� P (nx; ny � 1) t 2
@P (nx; ny)

@ny

P (nx + 1; ny)� 2P (nx; ny) + P (nx � 1; ny) t
@2P (nx; ny)

@n2x

P (nx; ny + 1)� 2P (nx; ny) + P (nx; ny � 1) t
@2P (nx; ny)

@n2y

The equation 13 for the stochastic process can be in this case
approximated by an equation with partial derivatives (PDE) that
have certain advantages both for analytic treating and for numerical
solution.
To clarify how to use this idea we consider �rst a simpler system

with reactions described by the scheme

(n;m+ 1)

�"#�

(n� 1;m)
�

�
�

(n;m)
�

�
�

(n+ 1;m)

�"#�
(n;m� 1)

:

In this case the equation for probability P (nx; ny) is particularly
simple:

dP (nx; ny)

dt
= � [�4P (nx; ny) + P (nx + 1; ny) + P (nx � 1; ny) + P (nx; ny + 1) + P (nx; ny � 1)]

(14)

Using the above relation for �nite di¤erences we immediately
come to the approximate di¤erential equation with partial deriva-
tives:

dP (nx; ny)

dt
= �

�
@2P (nx; ny)

@n2x
+
@2P (nx; ny)

@n2y

�
= �div(rP ); (15)
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that is the classical di¤usion equation.
Doing similar procedure for our main example we also get a sec-

ond order PDE. Introducing non-dimensional variables u, v, � ; a as
for ODE before and � = u=nx = v=ny we get an approximate PDE
for continuous P (u; v) in the form

@P (u; v; �)

@�
= r(DrP ��!F P ) (16)

where u � 0; v � 0, the matrix D and the vector
�!
F are of the

following form:

D =
�

2

�
a+ u+ u2v �u2v
�u2v b+ u2v

�
;

�!
F =

�
a� u+ u2v � �(1=2 + 2uv � u2=2)

b� u2v + �(2uv � u2=2)

�
:

This equation is called sometimes Fokker-Planck equation. Simi-
lar type of equations appear in the description of transport of parti-
cles or energy in stochastic environments with the simplest example
the di¤usion equation. In such situations coordinates u, and v are
the space coordinates and the function P (u; v; �) has the sense of
the density of particles or temperature at the point (u; v) at time
� .
For � = 0 the motion by 16 reduces to the deterministic motion

as for the law of mass action:

@P (u; v; �)

@�
= r�!F P; (17)

�!
F =

�
a� u+ u2v
b� u2v

�
: (18)

�!
F is a right hand side of the corresponding deterministic system 11.
The meaning of the equation 17 is simple: the distribution function
P (u; v; �) is constant along the trajectories of the deterministic sys-
tem 11 with right hand side

�!
F :

1.6 Monte-Carlo method

One more approach to modeling stochastic processes and chemical
kinetics in particular (two other were the equation for distribution
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function and the Fokker-Planck equation) is the so called Monte
Carlo method or the stochastic modeling method.
It consists shortly of the following procedure. One models not

the whole distribution function P (nx; ny; �) but many individual
"stories" or stochastic trajectories of molecules in the phase plane
undergoing stochastic transformations corresponding to the dynam-
ics described by the equation 13. After getting these stochastic
trajectories one looks for each time t on how many of these indi-
vidual trajectories come to a particular node (nx; ny) at this time.
The mathematical theory ofMonte Carlo method describes how the
modeling of the stochastic trajectories should be organized so that
the averaged over the trajectories population of the node (nx; ny)
in the lattice approximates the value of the distribution function
P (nx; ny).
We give here a description of the method by Gillespie for stochas-

tic modeling of chemical reactions and apply it to the same type of
problems as we considered above.
The fundamental hypothesis is that for a reaction R� of a set of

certain reactants, there is a constant c� such that
c��t is equal up to the �rst order in �t to averaged probability

that such particular combination of reactant molecules will react in
the next time interval �t. For example if R� is of type 2X+Y as one
of reactions before then the probability that such set of molecules
will react in th next time interval �t is equal to c��t+ o(�t).
The connection between c� and the rate constants k� in ODE

equations for the number of molecules is the following. We remind
that the reaction rate k� is the average reaction rate in unit volume
divided by the densities of all reactants. The averaged reaction rate
in the particular case is c� times the average number of distinct
combinations of 2X an Y that is in this particular case equal to
< X(X � 1)=2Y > where < ::: > denotes the statistical average.
Therefore k� =< X(X�1)=2Y > c�=V: Rewriting this expression

for densities x = X=V and y = Y=V and taking into account that for
a large systemX � X�1 we come to the expression k� =< x2y=2 >
V 2c�=(< x >2< y >):Using that for a large number of molecules
< x2y >�< x >2< y > we come to the expression k� = V 2c�=2:For
other combinations of molecules in a reaction one can get connection
formulated in a similar way.
The main quantity in a stochastic modeling method by Gillespie

is the reaction probability function P (� ; �) depending on a continu-
ous parameter � and a discrete number �; that is the number of reac-
tion. P (� ; �) is the probability that starting at time t the next reac-
tion in the volume V will occur in the time interval (t+� ; t+�+��)
and will be the reaction R� with number �:
Similar approaches were independently formulated also for other
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types of kinetics: transport of neutrons in nuclear reactors, light
scattering in atmospheres of stars, transport in porous media etc.

Let h� be the average number of distinct combinations of reactant
molecules for reaction R� at time t in the volume V:
Therefore h�c��t is to the �rst order of �t the probability that

the reaction R� will occur in V in the next interval �t.
h� = XY for a bimolecular reaction X + Y with two di¤erent

types of molecules; X and Y ;
h� = X(X � 1)=2 for a bimolecular reaction X + X with two

similar molecules;
h� = X(X�1)Y=2 for a three-molecular reaction 2X+Y . Other

combinations can also be calculated by elementary combinatorics.

Therefore the probability P (� ; �)d� above is the product of prob-
ability P0(�) , the probability at time t, that no reactions will occur
in the time period (t; t+ �); and
the probability h�c��� , the subsequent probability that an R�

reaction will occur in the next di¤erential time interval (t + � ; t +
� + d�):

P (� ; �)d� = P0(�)h�c���

To calculate P0(�) we divide interval (t; t+ �) into K >> 1 small
subintervals of length ". The provability that no reactions of any
type R� will occur in one subinterval is
1�

P
h�c�"+ o(") = 1�

P
h�c��=K + o(�=K). By multiplying

K such expressions we get the following expression for P0(�) :

P0 =
h
1�

X
h�c��=K + o(�=K)

iK
! exp

h
�
X

h�c��
i

P (� ; �)d� = h�c� exp
h
�
X

h�c��
i

We illustrate the idea of of using the modeling algorithm on an
example:
Example:

1. Betrakta följande reaktioner: X + Z

c1
!
 
c2

W; W

c3
!

P

där ci dt är sannolikheten att under tiden dt reaktionen med
index i skall äga rum. i = 1; 2; 3.
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a) Ange di¤erentialekvationer för antalet partiklar för dessa
reaktioner. (2p)
b) Ange formler för algoritmen som skulle stokastiskt modellera
dessa reaktioner enligt Gillespies metod. (2p)
Lösning: a)
X 0 = �c1XZ + c2W
Z 0 = �c1XZ + c2W
W 0 = c1XZ � (c2 + c3)W
P 0 = c3W

b) Gillespies metod.
P (� ; �)d� är sannolikheten att ha en reaktion av typ � under
ett tidsintervall d� efter tiden � då inga andra reaktioner ägde
rum.
P (� ; �) = P0(�)h�c�d� .
Här P0(�) är sannolikheten att inga reaktioner skall äga rum
under tiden � .
h�c�d� är sannolikheten att just reaktionen � skall gå under
tidsintervall d� .
h� är antalet olika kombinationer av partiklar för aktuellaX;Z;W; P
som kan delta i rekationen �. För reaktionen 1 i exemplet är
det h1 = X �Z, för reaktion 2 är det h2 = W , för reaktion 3 är
det h3 = W .
P0(�) = exp(�a�) med a =

P3
�=1 h�c�.

Algoritmen för att stokastiskt modellera givna reaktioner.
0) inicialisera variabler X, Z, W , P och tiden t = 0.
1) Beräkna hi, a.
2) Generera två slumptal r och p jämt fördelade över intervallet
(0; 1).
Tag tiden � före nästa reaktion som � = 1=a ln(1=r).

Välj nästa reaktion � så att
P�

i=1 hici � p a �
P3

i=�+1 hici.

3) Tillägg � till tidsvariabeln t. Ändra antalet partiklar enligt
väljad reaktion:
� = 1 ! X = X � 1, Z = Z � 1, W = W + 1.
� = 2 ! X = X + 1, Z = Z + 1, W = W � 1.
� = 3 ! P = P + 1, W = W � 1.
3) Om tiden är större änd den maximala tiden vi är intresserade
av, sluta beräkningar, annars gå till steg 1.
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