
Introduction to Monte Carlo methods

1 Monte Carlo method for integrals. Modeling of distributions.

1.1 Notations

We will present a general stochastic approach to compute integrals, to solve linear integral
equations and to solve non-stationary kinetic equations with possible source in chemistry
and in statistical physics. Elementary introduction to the master equation will be also
given.
0. For stochastic variable Q expectation is M(Q), variance is D(Q) = M(Q2) �

(MQ)2.
If Q has density q(x) the probability that Q is in a subset D � G is by the de�nition

integral of the density q over D:

P (Q 2 D) =
Z
D

q(x)dx (1)

1.2 Computing integrals

We consider an integral over a domain G in Rn and stochastic variable Q uniformly
distributed over G. It follows directly from the de�nition of the density that

I1 =

Z
G

f(x) =M(f(Q)) � 1

N

NX
i

f(Qi) (2)

where fQigNi is a sampling of the stochastic variable Q of the size N .
Consider an integral of the function f with a weight p(x) such that p(x) it is a prob-

ability density
R
G
p(x)dx = 1 for a stochastic variable P with values in G. The similar

arguments to ones above lead to

I2 =

Z
G

f(x)p(x)dx =M(f(P )) � 1

N

NX
i

f(Pi) (3)

where fPigNi is a sampling of the stochastic variable P of the size N .
Example.
We consider a simple example with one-dimensional integral and will introduce a

Monte Carlo scheme to compute it.

I =

Z 1

0

f(x)e�kxdx � 1

Nk

NX
i

f(�i) (4)

where � is the stochastic variable with density p(x) = ke�kx and f�igN1 is a sampling for
it.
For using these approximations in practice as also in previous general cases one needs

to sample �.
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1.3 Modeling stochastic variables with given density

a) Discrete stochastic variable.�
x1; x2; :::; xn
p1; p2; :::; pn

�
;

nX
i=1

pi = 1 (5)

Notation  will be used here and later for a �standard� uniformly distributed on
the unit interval [0; 1] stochastic variable that is available in any programming language
usually as a function with name rand.
Cut the interval [0; 1] in intervals �1, �2,..., �n. De�ne a stochastic variable � by the

following rule:
� = xi if  2 �i

Then � has the distribution above.
Proof. P (� = xi) = P ( 2 �i) = length(�i) = pi for any i.
b) Continuous 1-dim stochastic variables.
If � 2 [a; b] and has density p(x) > 0 (a and b we in�nite) we consider the distribution

function

F (x) = P (a < � < x) =

Z x

a

p(u)du (6)

Theorem.
Stochastic variable � such that F (�) =  has density p(x)
Proof.
F is monotone and therefore F (�) =  has exactly one solution for any  2 [0; 1].

Simple calculation shows the statement of the theorem:
P (x < � < x+�x) = P (F (x) <  < F (x+�x)) =

R F (x+�x)
F (x)

= F (x+�x)� F (x) =R x+�x
x

p(u)du
Example.
We want to model the variable � with the density p(x) = ae�a(x�x0);
x0 < x < +1.
F (x) =

Z x

x0

ae�au�x0du = 1� e�a(x�x0)

Therefore the equation for � is  = 1� e�a(��x0) and

� = x0 � 1=a ln(1� )

Variables  and 1 �  have the same distribution, therefore also the simpler formula
can be used:

� = x0 � 1=a ln()

Therefore the integral in the earlier example can be computed by the formulaZ 1

0

f(x)e�kxdx � 1

kN

NX
i=1

f

�
�1
k
ln i

�
where  is uniformly distributed over [0; 1].
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1.4 Estimates of the errors and importance sampling for integrals

Consider the integral
Z
G

f(P )dP .

Density p(P ) is acceptable for f if p(P ) > 0 in points P where f(P ) 6= 0.
If p(P ) > 0 in the whole G then it is acceptable for any f .
Consider the integral

I0 =

Z
G

f(P )

p(P )
p(P )dP

where p(P ) is the density of a stochastic variable Q such that p(P ) is acceptable for f .
Using the above method for computing integrals for I0. Let G+ be the subset of G where
f 6= 0.

Z0(P ) =

�f(P )
p(P )

; p 2 g+
0

�

I0 =M(Z0(Q)) =

Z
G

Z0(P )p(P )dP =

Z
G+
f(P )dP � 1

N

NX
i=1

Z0(Qi)

Error bounds depend on the variance DZ0(Q) of Z0(Q). Minimal DZ0 = 0 will be if
p(P ) is proportional to f(P ).
For the average �i of similarly distributed stochastic variables �i with expectation

M(�i) = a :

�N =
1

N

NX
i=1

�i

we have:
P (�N � a > ")! 0; N ! +1

for any " > 0.
One can get useful estimates of errors by using the central limit theorem that for

N ! +1 implies the following :

P
����N � a

�� < x
p
D�=N

�
� �(x)

where �(x) = (2=
p
2�
R x
0
e�t

2=2dt:
Choosing an acceptable probability � one can get corresponding constant x = x� in

the estimate above from the equation �(x�) = �. For example the probability � = 0:997
corresponds to x� = 3. The probability � = 0:95 corresponds to x� = 1:96.
Approximate error rN can be estimated from the same relation�(x�) = � with � = 0:5.

It gives x� = 0:6745and the error rN � 0:6745
p
D�=N . It shows that a smaller variance

D� for an estimate gives better precision.

2 Integral equations of second type.

We will consider integral equations of the second type:

z(P ) =

Z
G

K(P; P 0)z(P 0)dP 0 + f(P )
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or in operator form
z =Kz + f:

We will use the method with iterations to get an approximate solution by setting
z(0) = '(P ); z(i) =Kzi�1 + f:
Therefore

z(i) = f +Kf +K2f +K3f:::+Ki�1f +Ki':

If this sequence of approximations converges then the solution is represented by the
Neumann series:

z =
+1X
l=0

K lf:

If
RR
G�G

jK(P; P 0)j2 dP 0dP < 1 then the Neumann series converges in the mean square

sense

lim
i!1

Z
G

��z(i)(P )� z(P )
��2 dP = 0:

The proof is similar to one in the case we had for the integral equation corresponding
to ODE.
Example.
We consider a very general model for stochastic scattering of particles. Let variable P

describe coordinate in a possibly high-dimensional space including coordinates, velocities,
energy levels of internal degrees of freedom,
chemical type etc. Let f(P ) denote the the density of �rst collisions per unit time.

Density f(P ) is easy to calculate explicitly if the source of particles is given. Let z(P )
denote the unknown density of all collisions. Let Kcol l(P

0; P ) denote the probability that
a particle after undergoing a collision in point P 0 will have after a unit time the next
collision in the element dP of the phase space around the near P: Corresponding to this
rule equation is easy to write down:

z(P ) =

Z
Kcol l(P

0; P )z(P 0)dP 0 + f(P )

because a collision in the point P can be the �rst collision or collision that follows a col-
lision in the point P 0:The amount of such collisions per unit time is z(P 0)dP 0: Integration
over all possible P 0 we get the density of all collisions.
Iterations Kf , K2f , K3f , ..., Kif have a simple sense: they are densities of second,

third,... etc. collisions of particles.The Neumann series is therefore the sum of collisions
of all possible multiplicities.

2.1 Monte Carlo computation of iterations of a linear integral operator.

We consider how to computeKi': Usually one computes functionals ofKif that are mean
values

R
G
Ki'(P ) (P )dP with some weight function  (P ): The Monte Carlo method is

in fact e¤ective only for such computations, not for computation of the whole function
Ki�1'(P ).
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It is easy to observe thatZ
G

Ki'(P ) (P )dP =

Z
G

dP0

Z
G

dP1

Z
G

dP2:::

Z
G

dPi K(P0; P1)K(P1; P2):::

:::K(Pi�1; Pi)'(Pi) (P0)

The idea with computing such expression is essentially the same as the idea with
importance sampling approach in the chapter on Monte Carlo computing of an integral.
A particular idea in the present case is used for choosing sampling points in the high-
dimensional domain G�G�G� :::�G:
The sampling is organized in the following way. We choose in G an arbitrary proba-

bility density p(P ) acceptable for  and an arbitrary probability density p(P; P 0) in P 0

variable acceptable for the kernel K(P; P 0).Z
G

p(P )dP = 1;

Z
G

K(P; P 0)dP 0 = 1

We de�ne in G a stochastic "trajectory" Ti(Q0 ! Q1 ! Q2 ! Q3:::! Qi) where::
a) Q0 is chosen stochastically with density p(P ),
b) point Qj for a known Qj�1 is chosen with density p(Qj�1; Qj).
The function p(P; P 0) is therefore called transition probability from P , to P 0 and is

denoted by p(P; P 0) = p(P ! P 0). The function p(P ) is called the initial density.
The "trajectory" Ti can be interpreted as point in G � G � G � ::: � G and can be

used for the numerical integration in
R
G
Ki'(P ) (P )dP:

Density of this point is pi(Q0; Q1; Q2; :::; Qi) = p(Q0; Q1)p(Q1; Q2)p(Q2; Q3):::p(Qi�1; Qi).

We introduce for shorter notations weights

Wj =
K(Q0; Q1)K(Q1; Q2):::K(Qj�1; Qj)

p(Q0; Q1)p(Q1; Q2):::p(Qj�1; Qj)

de�ned for j = 1; :::; i:For j = 0 we put W0 = 1: Then

Wj = Wj�1
K(Qj�1; Qj)

p(Qj�1; Qj)
:

Let �i [ ] be the following stochastic variable:

�i [ ] =

�
 (Q0)

p(Q0)

�
Wi '(Qi):

Theorem.
The expectation M (�i [ ]) of �i [ ] is equal to

R
G
Ki'(P ) (P )dP :

M (�i [ ]) =

Z
G

Ki'(P ) (P )dP

The proof is straightforward consequence of the de�nition of Ti(Q0 ! Q1 ! Q2 !
Q3:::! Qi):
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Therefore the integral
R
G
Ki'(P ) (P )dP can be computed approximately by sam-

pling N trajectories �i [ ]s :Z
G

Ki'(P ) (P )dP � 1

N

NX
s=1

�i [ ]s

where the index s means the number of the realization of �i [ ].
Corollary.
The same set of N trajectories Ti(Q0 ! Q1 ! Q2 ! Q3::: ! Qi) can be used for

computing all
R
G
K l'(P ) (P )dP for 1 � l � i:

2.2 Trajectories with �xed initial point.

For computing Ki'(P0) in a particular point we need to take  (P ) = �(P � P0): It
means that the initial point in all trajectories Ti will be Q0 = P0: The disadvantage of
this approach is that for computing values ofKi' in another point the whole modeling of
trajectories should repeated again. Taking as  the characteristic function of a subdomain
G0 � G can give the mean value of Ki' in this subdomain.

2.3 Trajectories with absorption.

One can de�ne trajectories for computing multiple integrals
R
G
Ki'(P ) (P )dP in a

slightly di¤erent way. Namely the modi�ed algorithm is the following:

We de�ne in G a stochastic "trajectory" eT�(Q0 ! Q1 ! Q2 ! Q3:::! Q�) where::
a) Q0 is chosen stochastically with density p(P ),

b) After each step Qj the trajectory will be �nished (absorbed) with the probability
of "absorption" a(Qj) such that 0 < a(Qj) < 1:With probability s(Qj) = 1 � a(Qj) the
trajectory will continue.
c) point Qj following the point Qj�1 is chosen with density p(Qj�1; P ) with respect to

P:
Therefore the length � of the trajectory will be a stochastic number. We choose weightsfWj for a trajectory eT� of the length � in the following way:

fW0 = 1; fWj = fWj�1

�
K(Qj�1; Qj)

s(Qj)p(Qj�1; Qj)

�
; j � �:

Therefore Wj(P0; P1; :::; Pj) = fWj(P0; P1; :::; Pj)s(P0)s(P1); :::; s(Pj�1):We introduce a
stochastic variable e�i [ ] dependent on trajectories eTi with absorption

e�i [ ] =  (Q0)

p(Q0)
fWi

�
'(Qi)

a(Qi)

�
:

In the same way as above for the expectation M
�e�i [ ] j� = i

�
M
�e�i [ ] j� = i

�
=

Z
G

Ki'(P ) (P )dP [P f� = ig]�1
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where the probability P f� = ig for a trajectory to have length �. By modeling N such
trajectories we will get Ni of those of the length i: Evidently

Ni=N � P f� = ig :

Therefore Z
G

Ki'(P )(P ) (P )dP � P f� = ig
Ni

NiX
s=1

e�i [ ]s � 1

N

NiX
s=1

e�i [ ]s
where all trajectories of the length i are taken in the sum.

2.4 Monte Carlo computation of solutions to integral equations.

It is easy to observe that the integrals in the iterations

z(i) = f +Kf +K2f +K3f:::+Ki�1f +Ki':

for approximate solutions to the integral equation of the second type

z(P ) =

Z
G

K(P; P 0)z(P 0)dP 0 + f(P )

can be approximately computed using the same set of N stochastic trajectories Ti(Q0 !
Q1 ! Q2 ! Q3:::! Qi) as above.
We introduce a stochastic variable

� i [ ] =

�
 (Q0)

p(Q0)

�" i�1X
j=0

Wj f(Qj) +Wi'(Qi)

#
with

Wj = Wj�1
K(Qj�1; Qj)

p(Qj�1; Qj)
; W0 = 1

Theorem.

M � i [ ] =

Z
G

 (P )z(i)(P )dP � 1

N

NX
s=1

� i [ ]s

With the same trajectories one can compute
R
G
 (P )z(i)(P )dP for di¤erent  and f:

For di¤erent  with the same f even the computations of
Pi�1

j=0Wj f(Qj) in expressions
for � i [ ]s will be the same.
The minimal variance and the theoretically best convergence for this method will be in

the case if the integrals in the approximation are computed by the importance sampling
approach. In the particular case with the equation it means that ifK(P; P 0) � 0; z(P ) > 0
the initial density p(P ) and the transition probability p(P; P 0) are chosen as:

p(P ) =
j (P )j'(P )R

G
j (P )j'(P )dP

p(P; P 0) =
K(P; P 0)'(P 0)

K'(P )
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and that '(P ) is equal to the solution z(P ). This shows that the initial approximation
'(P ) is good to choose as close as possible to the actual solution z(P ):

2.5 In�nite trajectories.

One can also use "in�nite" trajectories not prescribing in advance the length of the tra-
jectories one wish to use in estimates.

� [ ] =

�
 (Q0)

p(Q0)

�"+1X
j=0

Wj f(Qj)

#
Z
G

z(P ) (P )dP � 1

N

NX
s=1

� [ ]s

In practice the in�nite sum in the expression for � [ ] must be catted using some thresh-
olding.

2.6 Conjugate integral equation and the "forward" Monte Carlo method.

We considering here the equation

u(P ) =

Z
G

K�(P; P 0)u(P 0)dP 0 +  (P )

with kernel K�(P; P 0) = K(P 0; P ), or generally

u =K�u+  

with the operator K� where arguments P and P 0 in the kernel changed places in com-
parison with the original equation.

z =Kz + f:

This equation is useful for inventing alternative methods for computing functionals
R
G
 (P )z(P )dP

of solutions z to the original equation. It is easy to observe thatZ
G

u z dP =

Z
G

u [Kz + f ] dP =

Z
G

zK�u+ f u dP

Z
G

u z dP =

Z
G

z [K�u+  ] dP =

Z
G

zK�u+  zdP

!
Z
G

 zdP =

Z
G

f u dP

and therefore a functional of z can be computed by computing another functional for the

solution u of the conjugate equation

u =K�u+  :
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Introducing trajectories with probability densities p(P ) and p(P; P 0) acceptable for
f(P ) and K�(P; P 0) = K(P 0; P ) we get a monte Carlo method for computing

R
G
f u dP =R

G
 zdP:

�� [f ] =
f(Q0)

p(Q0)

"
+1X
j=0

W �
j  (Qj)

#

W �
j = W �

j�1

�
K�(Qj�1; Qj)

P (Qj�1; Qj)

�
; W �

0 = 1:

M �� [f ] =

Z
G

 zdP =

Z
G

f u dP � 1

N

NX
s=1

�� [f ]s

where �� [f ]s is the value of �
� [f ] on the s-th trajectory. Even for symmetric kernels

K(P; P 0) = K(P 0; P ) whenWj = W �
j the last estimate di¤ers from our previous estimates

with � [ ] :

� [ ] =
 (Q0)

P (Q0)

"
+1X
j=0

Wj f(Qj)

#
;

�� [f ] =
f(Q0)

p(Q0)

"
+1X
j=0

Wj  (Qj)

#
:

For computation of � [ ] one calculates  one time and f many times. For computation
of �� [f ] one calculates f one time and  many times. On the other hand the method
using the conjugate equation with estimate of �� [f ] lets to solve equations with source f
concentrated in a point P0 : f(P � P0) = �(p� P0): One just constructs �

� [f ] with �xed
initial point Q0 = P0:

2.7 Example with scattering of particles. Continuation.

The above example with scattering of particles:

z(P ) =

Z
Kcol l(P

0; P )z(P 0)dP 0 + f(P )

can be solved by both methods considered above. On the other hand the method with con-
jugate equation has a simple physical interpretation as a method with "true trajectories"
or the method of direct stochastic modeling.
The probability s(P 0) that a prticle after a collision in P 0 will collide again is

s(P 0) =

Z
G

Kcol l(P
0; P )dP:
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Therefore s(P 0) is the probability of scattering in the point P 0: a(P 0) = 1�s(P 0) is the
probability that the particle will not collide more and disappears from the consideration,
will be "absorbed", because we consider the density z(P ) of collisions.
"True" trajectories of paticles will be trajectories with absorption like eT� above with

transition probability
p(P; P 0) = Kcol l(P; P

0)=s(P )

with "true" absorption probability a(P ) = 1�s(P ). This density is always acceptable for
the kernel of the equation.Therefore is it usefult to construct an estimate for functionalR
G
f u dP instead of the functional

R
G
 z dP:

Corresponding stochastic variable for computation is formally:

e��� [f ] = f(Q0)

p(Q0)
fW �
�

�
 (Q�)

a(Q�)

�
:

But for each i fW �
j =

iY
j=1

Kcol l(Qj�1; Qj)

s(Qj�1) p(Qj�1; Qj)
= 1 !!!

Therefore in this case the stochastic variable looks particularly simple:

e��� [f ] = f(Q0)

p(Q0)

�
 (Q�)

a(Q�)

�
;

where � is the (stochastic) length of the trajectory.

M e��� [f ] = Z
G

 z dP � 1

Ni

NX
s=1

e��� [f ]s :
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