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An exact method is presented for numerically calculating, within the framework of the 
stochastic formulation of chemical kinetics, the time evolution of any spatially homog- 
eneous mixture of molecular species which interreact through a specified set of coupled 
chemical reaction channels. The method is a compact, computer-oriented, Monte Carlo 
simulation procedure. It should be particularly useful for modehng the transient be- 
havior of well-mixed gas-phase systems in which many molecular species participate in 
many highly coupled chemical reactions. For “ordinary” chemical systems in which 
fluctuations and correlations play no significant role, the method stands as an alter- 
native to the traditional procedure of numerically solving the deterministic reaction 
rate equations. For nonlinear systems near chemical instabilities, where fluctuations and 
correlations may invalidate the deterministic equations, the method constitutes an effic- 
ient way of numerically examining the predictions of the stochastic master equation. 
Although fully equivalent to the spatially homogeneous master equation, the numerical 
simulation algorithm presented here is more directly based on a newly defined entity called 
“the reaction probability density function.” The purpose of this article is to describe 
the mechanics of the simulation algorithm, and to establish in a rigorous, a priori manner 
its physical and mathematical validity; numerical applications to specific chemical 
systems will be presented in subsequent publications. 

1. INTRODUCTION 

The time evolution of a spatially homogeneous mixture of chemically reacting 
molecules is usually calculated by solving a set of coupled ordinary differential 
equations. If there are N chemically active molecular species present, there will 
be N differential equations in the set; each equation expresses the time-rate-of- 
change of the molecular concentration of one chemical species as a function of the 
molecular concentrations of all the species, in accordance with the stoichiometric 
forms and reaction constants of those chemical reactions which involve that 
particular species. This traditional method of analysis is based upon a deterministic 
formulation of chemical kinetics, in which the reaction constants are viewed as 
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reaction “rates,” and the various species concentrations are represented by con- 
tinuous, single-valued functions of time. Although this deterministic formulation is 
adequate in most cases, there are important situations, such as a nonlinear system 
in the neighborhood of a chemical instability, for which its underlying physical 
assumptions are unrealistic and its consequent predictions are unreliable. 

An approach to the chemical kinetics of spatially homogeneous systems which 
is somewhat more broadly applicable than the deterministic formulation is the 
stochastic formulation. Here the reaction constants are viewed not as reaction 
“rates” but as reaction “probabilities per unit time,” and the temporal behavior 
of a chemically reacting system takes the form of a Markovian random walk in 
the N-dimensional space of the molecular populations of the N species. In the 
stochastic formulation of chemical kinetics the time evolution is analytically 
described, not by a set of N coupled differential equations for the species concen- 
trations, but rather by a single differential-difference equation for a grand proba- 
bility function in which time and the N species populations all appear as 
independent variables. This differential-difference equation is customarily called 
the master equation, and the function which satisfies that equation measures the 
probability of finding various molecular populations at each instant of time. 

From a physical point of view, the stochastic formulation of chemical kinetics 
is superior to the deterministic formulation: the stochastic approach is always 
valid whenever the deterministic approach is valid, and is sometimes valid when 
the deterministic approach is not. (Some may disagree with this assertion; we shall 
present arguments supporting it in Section 2). From a strictly mathematical 
point of view, though, the set of deterministic reaction rate equations for a given 
chemical system is invariably much easier to solve than the stochastic master 
equation for the same system. However, if the system involves more than a few 
molecular species and chemical reactions, it usually turns out that neither 
formulation of chemical kinetics is tractable by purely analytical methods, and one 
is forced to consider computer-oriented numerical methods. Considerable success 
in this vein has been realized within the deterministic formulation by applying 
finite-time-step techniques to the coupled differential reaction rate equations. 
Within the framework of the stochastic formulation, though, prospects for per- 
forming numerical calculations have until now been regarded as generally 
unpromising. 

In this paper we present what appears to be an eminently feasible method for 
numerically calculating the stochastic time evolution of virtually any spatially 
homogeneous chemical system. This computational method does not try to 
numerically solve the master equation for a given system; instead, it is a systematic, 
computer-oriented procedure in which rigorously derived Monte Carlo techniques 
are employed to numerically simulate the very Markov process that the master 
equation describes analytically. The simulation algorithm is fully equivalent to 



SIMULATING COUPLED CHEMICAL REACTIONS 405 

the master equation, even though the master equation itself is never explicitly 
used. The algorithm is simple, compact and efficient, yet is capable of handling 
systems involving many chemical species and many highly coupled and highly 
nonlinear chemical reactions. Except for its reliance upon some computer subroutine 
for generating “random” numbers uniformly in the unit interval, our computational 
procedure imposes no approximations on the stochastic formulation of chemical 
kinetics; in particular, it takes full account of the inherent statistical correlations 
and fluctuations that are neglected in the deterministic formulation of chemical 
kinetics. Furthermore, our computational procedure never has to approximate 
infinitesimal time increments dt by small but finite time steps fit; it is of course the 
successive application of that particular approximation which often gives rise to 
computational inaccuracies and instabilities in the standard numerical methods 
for solving the deterministic reaction rate equations. 

The general problem which we address here may be formulated as follows: 
We are given a volume V which contains molecules of N chemically active species 
S, (i = I,..., N), and possibly molecules of several inert species as well. Let 

Xi = current number of molecules of chemical species 

Si in V, (i = 1, 2 ,..., N). 
(1) 

We are further given that these N chemical species & can participate in A4 chemical 
reactions R, (p = I,..., M),l each characterized by a numerical reaction parameter 
c, which will be defined momentarily. For definiteness, we suppose that each 
reaction in the set {R,) is one of the following general types. 

* + reaction products, 

Sj + reaction products, 

Sj + S, -+ reaction products 

2Sj + reaction products, 

Si + Sj + SK -+ reaction products 

Sj + 2S, + reaction products 

3Sj + reaction products. 

(j f k), 

(i # j # k # 9, 
Cj f k), 

(24 
CW 
cw 

WI 
W 
(W 
cw 

Reaction type (2a) denotes a “spontaneous creation” or “external source” reaction, 
in which one or more members of {Si} appear as products but none as reactants. 
In types (2b)-(2g), the reaction products may contain none, one, or more than 

1 We shall use Roman indices when referring to one of the N chemical species Si , and Greek 
indices when referring to one of the M chemical reactions R,, . 
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one of the chemical species in the set iSi}. Note that each Ru reaction is uni- 
directional, so any reversible reaction must be considered as two separate uni- 
directional reactions. 

The fundamental hypothesis of the stochastic formulation of chemical kinetics 
(and the only “assumption” to be made by our computational method) is that the 
reaction parameter c, which characterizes reaction R, can be defined as follows. 

c, St = average probability, to first order in St, that a 
particular combination of R, reactant molecules will 
react accordingly in the next time interval St. 

(3) 

For example, if R, is of type (2c), then the probability that a particular &-S, pair 
of molecules will react according to (2~) in the next time interval St, averaged 
over all S,S, pairs, is equal to c, St + o(&), where o(8t) denotes unspecified 
terms which satisfy o(&)/St -+ 0 as St + 0. In Section 2 we shall review the physical 
basis for (3), and we shall also examine the relationship between c, as defined 
in (3) and the more familiar “reaction rate constant” k, which is used in the deter- 
ministic formulation of chemical kinetics. 

Our principle task is to develop a method for simulating the time evolution 
of the N quantities {X,}, knowing only their initial values {Xi(O)), the forms of the 
M reactions {R,}, and the values of the associated reaction parameters (c,}. In 
Section 3 we develop the formal mathematical foundation for our simulation 
procedure. The operational steps of the algorithm itself are then outlined in 
Section 4, with the implementation of the crucial “Monte Carlo step” being 
discussed in detail in Section 5. A short resume of the requisite Monte Carlo 
techniques is provided in the Appendix. In Section 6 we illustrate our general 
discussion by exhibiting a Fortran program which applies the simulation algorithm 
to a specific set of coupled chemical reactions; this example should also serve to 
convey a rough idea of what is required by the algorithm from the standpoint 
of a digital computer. We shall not undertake any actual numerical calculations 
here, though, since our concern in this paper is only to describe the simulation 
algorithm itself and to establish in an a priori manner that it is a rigorous conse- 
quence of the fundamental stochastic hypothesis (3). We conclude in Section 7 
by giving a summary of our simulation algorithm, and making some preliminary 
observations about its advantages, limitations, and possible extensions. 

2. RATIONALE FOR THE STOCHASTIC FORMULATION 

The stochastic approach to chemical kinetics has been pursued over the past 
two decades by A. Renyi, A. Bartholomay, D. McQuarrie, and a number of others; 
for an extensive summary of this work, see the review article by McQuarrie [l]. 
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The justification for using the stochastic approach, as opposed to the mathe- 
matically simpler deterministic approach, was that the former presumably took 
account of fluctuations and correlations, whereas the latter did not. It was sub- 
sequently demonstrated by Oppenheim et al. [2], and later proved conclusively 
by Kurtz [3], that the stochastic formulation reduces to the deterministic formu- 
lation in the thermodynamic limit (wherein the numbers of molecules of each 
species and the containing volume all approach infinity in such a way that the 
molecular concentrations approach finite values). This finding, coupled with the 
fact that the deterministic formulation can be derived from the Liouville equation 
(via the Boltzmann equation) in the dilute thermodynamic limit, shows that both 
formulations of chemical kinetics are legitimate in that special limit. But 
Oppenheim et al. [2] went further to suggest that, inasmuch as no one has yet 
succeeded in deriving the stochastic formulation from the Liouville equation, the 
stochastic formulation may be nothing more than an ad hoc transcription of the 
deterministic formulation, with no legitimate predictive value at all for fluctuations 
and correlations in finite chemical systems. 

We shall present in this section a rather elementary argument which indicates 
that the physical basis of the stochastic formulation is considerably more substantial 
than this. Inasmuch as the legitimacy of the stochastic formulation hinges entirely 
on the assumption that each chemical reaction R, can be characterized in the 
manner of statement (3), the problem we address here is to determine under what 
conditions (3) has a legitimate physical basis. 

To investigate this matter, let us see what is involved in calculating c, for the 
simple bimolecular reaction 

R, : S, f S, + 2S, (4) 

in the idealized case in which the Si molecules are hard spheres with masses mi 
and diameters di . In that case, a 1-2 collision will occur whenever the center-to- 
center distance between an S, molecule and an S, molecule decreases to 
d12 E (4 + dJ/2. Let v12 be the speed of an arbitrary S, molecule relative to 
an arbitrary S, molecule. Then, in the vanishingly small time interval St, molecule 1 
sweeps out relative to molecule 2 a “collision volume” 6VC0u = 7rdfa . v12 at, 
in the sense that if the center of 2 lies inside 6 V Cou then 1 and 2 will collide in time 
St. The requirement that St be vanishingly small is imposed for two reasons: 
first, this insures that 6V,,u too will be vanishingly small, so that if the center of 2 
does lie inside 6VC0u , then there will be only a negligibly small probability that 
a 1-2 collision in the next St interval will be prevented by an earlier collision of 
1 or 2 with some other molecule; and secondly, the eventual application of the 
results of these calculations will require that we take the limit St --+ 0. 

Now, in traditional textbook derivations of the deterministic reaction rate 
constant k, , the normal procedure at this point would be to require that the 
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system be spatially homogeneous, so that the distribution of the constituent mole- 
cules throughout the containing volume V may be regarded as “uniform”, and to 
then consider “the number of S, molecules whose centers lie inside 6V,,,u .” 
Unfortunately though, that quantity becomes physicaZZy meaningless in the 
inevitable limit S VCOu -+ 0; for, in that limit SVCOu will obviously contain either 
0 or 1 S, molecules, with the former possibility becoming more and more likely 
as the limiting process proceeds. It might be thought that this difficulty could be 
circumvented by considering instead the average number of S, molecules whose 
centers lie inside 6V,,u . However, to deal with averages at this early stage of 
the calculation will lead to other conceptual difficulties later on; in the case of 
reaction (4), these difficulties arise essentially from the fact that the average 
number of S,--S, molecular pairs is not exactly equal to the product of the average 
number of S, molecules times the average-number of S, molecules. Herein, of 
course, lies the source of the inexact nature of the deterministic reaction rate 
equations. 

We can easily avoid all these difficulties, though, if we simply take the condition 
of “spatial homogeneity” to mean that the molecules are randomly distributed 
in a uniform sense throughout V (as would be the case, for example, in a well- 
mixed gas-phase system). We shall discuss later how this sort of spatial 
homogeneity might be physically insured. For now, through, we merely observe 
that this condition implies that the probability that the center of one S, molecule 
will lie inside SVCOu is given precisely by 6 VCOu/V. In this stochastic context, we 
may then proceed to utilize in a logically consistent manner the simple mathematical 
manipulations that are employed in conventional textbook treatments [4] of 
chemical kinetics: Thus, the average probability that a particular l-2 molecular 
pair will collide in the next time interval St is, to first order in St, 

where the brackets denote an average over the velocities of all S,-S, molecular 
pairs. If we further assume that the S,-S, mixture is in thermal (not chemical) 
equilibrium at absolute temperature T, so that not only are the positions of the 
molecules randomly distributed according to a uniform distribution inside V, 
but in addition the velocities of the molecules are randomly distributed according 
to Maxwell-Boltzmann distributions, then the average (v& is easily calculated, 
and the above expression becomes 

(6V&V) = V-1~df2(8kT/~m,,)“2 6t. (5b) 

Here, k is Boltzmann’s constant and m12 is the reduced mass m,m.J(m, + m2). 
If every l-2 collision leads to an R, reaction, then the above expression evidently 
corresponds exactly to the quantity c,, St defined in (3). However, it is more 



SIMULATING COUPLED CHEMICAL REACTIONS 409 

reasonable to suppose that an R, reaction will occur in only those collisions in 
which the kinetic energy due to the relative motion along the line of centers at 
contact exceeds some prescribed value u,*, the “activation energy.” If we repeat 
the above argument taking into account the collision geometry, and allowing only 
the “reactive collision” configurations, we will obtain the same result except for 
a diminuting factor of exp(--u,,*/kT). Thus we conclude that, for the bimolecular 
hardsphere reaction R, in (4), if conditions of thermal equilibrium prevail for 
species S, and S, , then the quantity defined in (3) indeed exists and the reaction 
parameter c, is given by 

c, = V-1rrd$3kT/~m,z)1’2exp(-uU*/kT). (6) 

The key element in the foregoing analysis is the requirement that the reactant 
molecules always be randomly distributed uniformly throughout V; that is what 
set the stage for the introduction of the collision probability 6 VCOll/ V. Unless some 
external stirring mechanism can be employed to fulfill this requirement, we must 
simply rely upon the natural motions of the molecules to keep the system well 
mixed. For this, it evidently suffices to require the system to be such that the non- 
reactive (elastic) molecular encounters, which serve to randomize and uniformize the 
positions of the molecules, occur much more frequently than the reactive (inelastic) 
molecular encounters, which change the population levels of the various molecular 
species. Clearly, this circumstance will allow a uniform redistribution of the mole- 
cules inside V prior to each reactive collision; in addition, this will also allow the 
continual restoration of the Maxwell-Boltzmann velocity distributions of the 
various species, which tend to be preferentially depleted on their high ends by the 
reactive collisions. Of course, the observation that nonreactive molecular 
encounters have an equilibrizing effect on molecular systems is certainly not new 
[4,5], but the bearing of this fact on the issue of the legitimacy of the stochastic 
formulation of chemical kinetics does not seem to have been widely appreciated. 

The condition that nonreactive molecular collisions occur much more frequently 
than reactive molecular collisions is thus a convenient criterion for applicability of 
the stochastic formulation of chemical kinetics. Whenever this condition is satisfied, 
it should be possible to characterize the occurrences of the reactions R, in the 
manner of (3). Of course, the actual calculation of c, will usually be much more 
involved than that sketched above for the simple hard-sphere bimolecular 
reaction (4); indeed, sometimes it will be easier to determine c, experimentally 
instead of theoretically. On the other hand, if reactive collisions occur more 
frequently than nonreactive collisions, then the stochastic formulation of chemical 
kinetics would probably not be strictly valid. Of course, we should not expect the 
usual deterministic formulation to be valid then either, inasmuch as it obviously 
presupposes uniform concentrations for all chemical species. In such cases we 
should probably have to resort to an approach closer to the Liouville equation, 
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i.e., a “molecular dynamics” approach in which the positions and velocities of 
all the molecules are accounted for explicitly before any averaging is performed. 

Now let us examine the relationship between the reaction parameter c, , as 
defined in (3), and the more familiar reaction rate constant k, , which is used in 
the deterministic formulation of chemical kinetics. Referring again to the simple 
bimolecular reaction R, in (4), if there are X,(X,) molecules of S,(S,) inside V, 
then there will be X,X, distinct combinations of reactant molecules inside V, and 
it follows from (3) and the addition theorem for probabilities that X,X, * c, dt 
gives the probability that an R, reaction will occur somewhere inside V in the next 
infinitesimal time interval dt. From this we may infer that (X1X+$ = (X,X,) c, 
is the average rate at which R, reactions are occurring inside V, where (**.) now 
means an average taken over an ensemble of stochastically identical systems. 
The average reaction rate per unit volume would then be (X,X,) c,/V, or in terms 
of the molecular concentrations Xi = X,/V, (x1x& Vcu . Now, the reaction rate 
constant k, is conventionally defined to be this average reaction rate per unit 
volume divided by the product of the average densities of the reactants; thus we 
obtain for R, in (4), 

k, = <x& J’~,l(x,>(x,i. (7a) 

However, in the deterministic formulation no distinction is made between the 
average of a product and the product of the averages; i.e., it is automatically 
assumed that (xix?) = (xi)(xj). For i # j this assumption nullifies the effects 
of correlations, and for i = j it nullifies the effects offiuctuations. In any case, this 
assumption evidently simplifies the above expression for k, to 

k, k Vc,. 0) 

And indeed, if we simply multiply (6) by V we get the well-known formula for the 
reaction rate constant for a hard-sphere bimolecular reaction [4]. 

If R, had been an 5’-S, reaction instead of an S,-S, reaction, then the number of 
distinct reactable pairs would have been X,(X, - I)/2 N X12/2, and we would have 
obtained k, f VcJ2 instead. For monomolecular reactions k, and c, will be 
equal; for trimolecular reactions we will get a factor of V2 instead of V. 

In summary, we see that the mathematical relationship between c, and k, is 
always rather simple, but from a physical standpoint c, appears to be on much 
firmer ground. We also see that the stochastic formulation of chemical kinetics 
for spatially homogeneous systems does indeed take proper account of correlations 
and fluctuations which are ignored in the deterministic formulation. The works 
of Oppenheim et al. [2] and Kurtz [3] have proved that the effects of these corre- 
lations and fluctuations vanish in the thermodynamic limit. Just how large the 
system must be before the thermodynamic limit can be considered “reached” 
will vary with the situation. Experience indicates that, for most systems, the 
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constituent molecules need number only in the hundreds or thousands in order 
for the deterministic approach to be adequate; thus, for most systems the differences 
between the deterministic and stochastic formulations are purely academic, and 
one is free to use whichever formulation turns out to be more convenient or efficient. 
However, near chemical instabilities in certain nonlinear systems, fluctuations and 
correlations can produce dramatic effects, even for macroscopic numbers of 
molecules [6, 7, 81; for these systems the stochastic formulation would be the more 
appropriate choice. 

3. THE REACTION PROBABILITY DENSITY FUNCTION 

The USUUI stochastic approach [l] to the coupled chemical reactions problem 
outlined in Section 1 focuses upon the grand probability function 

9(X1 ) x2 )...) x, ; t) = the probability that there will be X, molecules 
of S, , and X, molecules of S, ,..., and X, (8) 
molecules of S, , in V at time t, 

and its moments 

Xi’“‘(t) Es f *.. f xi?9yx1 )...) XN;t) (i=l,..., N;k= 1,2 )... ). (9) 
x1=0 XjJ=O 

Physically, Xl”‘(t) is “the average (number)” of S, molecules in V at time t.” By 
“average” here we mean an average taken over many repeated realizations or 
runs from time 0 to time t of the stochastic process described by (3), with each 
run starting in the same initial state {Xi(o)}.2 The number Xi of Si molecules found 
at time t will vary from run to run; however, the average of the kth power of the 
values found for A’, in these runs will approach Xi”‘(t) in the limit of infinitely many 
runs. Particularly useful are the k = 1 and k = 2 averages; this is because the 
quantities 

Jr,!‘)(t) (104 

and 
L&(t) = {xi”‘(t) - [X))(t)]“}ll” (lob) 

measure, respectively, the average number of Si molecules in V at time t, 

and the magnitude of the root-mean-square fluctuations about this average. 

2 These runs can he performed simultaneously instead of sequentially if we use an “ensemble” 
of many identical systems. 



412 DANIEL T. GILLESPIE 

In other words, we may “reasonably expect” to find between 

[X!‘)(t) - A .(t)] z I and [X,“‘(t) + d&)] 

molecules of & in V at time t. 
The so-called master equation is just the time evolution equation for the function 

~‘(Xl ,***> X, ; t), and it can be rigorously derived from (3) by using simple proba- 
bility calculus. However, more often than not the master equation turns out to be 
virtually intractable, both analytically and numerically. Attempts to use the master 
equation to construct tractable time-evolution equations for the moments Xi(“)(t) 
are likewise usually fruitless; this is because the equation for the kth moment 
typically involves one or more higher order moments, so that the set of moment 
equations is infinitely open-ended. 

Our computational method avoids these “traditional” difficulties by starting 
off from the fundamental stochastic hypothesis (3) in a different way. More speci- 
fically, the principle theoretical construct upon which our numerical procedure 
is based is not the grand probability function 9’ in (8), nor any of its derived 
quantities, but rather an entity which we shall call the reaction probability density 
function, P(T, p). This quantity is defined by 

P(T, p) d7 E probability at time t that the next 
reaction in V will occur in the differential (11) 
time interval (t + T, t -I- T + dT), and will be an R, reaction. 

In the terminology of probability theory, P(7, CL) is a joint probability density 
function on the space of the continuous variable T (0 < 7 < cc) and the discrete 
variable p (p = 1, 2,..., M). To the author’s knowledge, this quantity has not been 
considered in detail before by workers in chemical kinetics, or at least it has not 
been utilized in the systematic way we shall propose here. In this section we shall 
derive from the basic postulate (3) an exact analytical expression for P(T, p); in the 
following sections we shall use P(T, p) to construct a rigorous algorithm for simu- 
lating the temporal development of our chemical system. 

To derive a formula for P(T, p), we begin by defining the M state variables 
h , h, ,..., h, by 

h, I number of distinct molecular reactant combinations for 
reaction R, found to be present in V at time t. (12) 

* It is tacitly assumed in (3) that the probability for more than one reaction to occur in St is 
o(Q). Since we are eventually going to take the limit St + 0, it is permissible here. to simply 
regard as impossible the occurrence of more than one reaction in St. 
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With (3) and the addition theorem for mutually exclusive probabilities,3 we there- 
for have 

h,c, 6t = probability, to first order in at, that an R, reaction will 
occur in I’ in the next time interval 6t. (13) 

In general, h, will be a function of the current Xi values of the reactant species 
in R, . For the specific reaction types in (2) (12) implies* 

h, = 1, for type (2a) reactions; (144 
h, = Xj 3 for type (2b) reactions; (1W 
h, = XjXk 9 for type (2~) reactions; w4 
h, = Xj(Xi - 1)/2, for type (2d) reactions; (144 
h, = .XdXjXk 9 for type (2e) reactions; We) 
h, = X&(X, - 1)/2, for type (2f) reactions; W) 
ha = Xj(Xi - 1)(X$ - 2)/6, for type (2g) reactions. Wg) 

We shall calculate the probability in (11) as the product of PO(~), the probability 
at time t that no reaction will occur in the time interval (t, t + T), times h,c, dr, 
the subsequent probability that an R, reaction will occur in the next differential 
time interval (t f T, t -t T f dT): 

P(T, /A) dT = PO(T) . h,c,, dT. (1% 

Note that we need not worry about more than one reaction occurring in (t + T, 

t + 7 + dT), since the probability for this is o(dT). 
To calculate PO(~), the probability that no reaction occurs in (t, t + T), imagine 

the interval (t, t + T) to be divided into K subintervals of equal length E = T/K. 
The probability that none of the reactions RI ,..., R,+, occurs in the first E subinterval 
(t, t + E) is, by (13) and the multiplication theorem for probabilities, 

fj [l - h,w + 0(41 = 1 - c” h,w + 44. 
V=l 

This is also the subsequent probability that no reaction occurs in (t + E, t + 24, 
and then in (t + 2~, t + 3e), and so on. Since there are K such E subintervals 
between t and t + 7, then PO(r) can be written 

p,(T) = [ 1 - 1 hvv + o(E)]~ 

= [ 1 - ;: h&T/K + o(K-l)]? 
” 

4 We let (14a) define /I~ for reaction type (2a), since definition (12) is ambiguous for that type. 
Equation (13) is then valid for all reaction types. 
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This is true for any K > 1, and in particular it is true in the limit of infinitely 
large K. Therefore, 

PO(T) = gj [l - ((F h,c,~ + o(K-~W~)/I~, 

or, using the standard limit formula for the exponential function, 

(16) 

We should note in passing that it would be incorrect to derive (16) by simply 
multiplying M individual probabilities exp( -h,,c,T), corresponding to the non- 
occurrence of each reaction R, in (t, t + T); the reason we cannot do this is that 
eXp( -h&T) is the probability that R, will not occur in (t, t + T) only in the absence 
of all other reaction channels which involve the R, reactants. 

Inserting (16) into (15), we arrive at the following exact expression for the 
reaction probability density function defined in (11): 

P(T, p) = h,c, exp [- &W]. 

To be precise, this formula gives P(T, I*) for 0 < 7 < co and 1 < p < M, with 
7 real and p integer; for all other values of T and p, P(T, p) is zero. A schematic 
plot of P(T, p) is shown in Fig. 1. The domain of definition of P(T, CL) consists of 
the M lines in the Tp-plane extending from the first M integer points on the p-axis 
in the positive T direction. The area shown shaded in Fig. 1 is evidently equal to 

FIG. 1. Schematic plot of the reaction probability density function P(T, p) as given in (17). 
The shaded area is by definition equal to the probability in (1 l), and the sum of the areas under 
all it4 curves is by (18) equal to unity. 
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the probability in (11). We note that this probability density function is properly 
normalized over its domain of definition, since 

We also observe that P(T, p) depends, through the quantity in the exponential, 
on the reaction parameters for all reactions (not just R,) and on the current 
numbers of molecules of all reacting species (not just the R, reactants). 

4. THE SIMULATION ALGORITHM 

The basic idea of our computational procedure is to use Monte Carlo techniques 
to simulate the stochastic process described by P(,, p) in (17). Assuming that we 
have access to a fast digital computer, our simulation algorithm is straightforward, 
and may be outlined as follows: 

Step 0 (initialization). Set the time variable t = 0. Specify and store initial 
values for the N variables X, , X, ,..., X, , where Xi is the current number of mole- 
cules of chemical species Si . Specify and store the values of the M reaction para- 
meters c, , c2 ,..., c,,., for the M chemical reactions {R,}. Using (14), calculate and 
store the M quantities h,c, , h,c, ,..., hMcM which collectively determine the reaction 
probability density function P(7, CL) in (17). Finally, specify and store a series 
of “sampling times” tl < t2 < ..a, and also a “stopping time” &top . 

Step 1. By employing suitable Monte Carlo techniques, generate one 
random pair (T, E.L) according to the joint probability density function P(T, p) 
in (17). Explicit methods for doing this are presented in Section 5. 

Step 2. Using the numbers T and p generated in Step 1, advance t by 7, 
and change the {Xi) values of those species involved in reaction R, to reflect the 
occurrence of one R, reaction. Then, recalculate the h,c, quantities for those 
reactions R, whose reactant X,-values have just been changed. (For example, 
suppose R, is the reaction S, + S, --f 2S, . Then after replacing t by t + 7, we 
would replace X, , X, and X, by X1 - 1, X, - 1 and X3 + 2, respectively; we 
would then recalculate h,c, in accordance with (14) for every reaction R, in which 
either S, or S, or S, appears as a reactant.) 

Step 3. If t has just been advanced through one of the sampling times ti , 
read out the current molecular population values X, , X, ,..., X, . If t > &top , 
or if no more reactants remain (all h, = 0), terminate the calculation; otherwise, 
return to Step 1. 
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The computer storage space required for the above procedure is evidently quite 
minimal: The principle quantities which must be carried in computer memory 
are the N + 2M quantities {Xi}, (c,} and {h,c,}, and it is difficult to imagine any 
system of M coupled chemical reactions involving N molecular species for which 
the required memory storage space would exceed a few hundred word locations. 
On the other hand, the speed of the computer is quite critical: Since each individual 
molecular reaction is simulated in turn, the speed with which the central arithmetic 
unit can execute Steps 1,2 and 3 will impose an upper limit on how many molecular 
reactions can be effected. This in turn limits both the number of reactant molecules 
the system can contain and the length of time over which the evolution of the system 
can be followed. Indeed, the maximum number of reactant molecules and the 
maximum evolution time will be roughly inversely proportional to each other, 
and their product will be roughly proportional to the speed of the computer. 
Fortunately, Steps 2 and 3 are simple to execute, and, except for the few read-outs 
in Step 3, the computer never needs to go outside of its central memory core. As 
we shall see in the next section, the same is also true of Step 1. Therefore, in spite 
of the excruciating meticulousness of our simulation procedure, modern high speed 
computers should render it practical in many nontrivial situations. 

By carrying out the above procedure from time 0 to time t, we evidently obtain 
only one possible realization of the stochastic process defined in (3). In order to 
get a statistically complete picture of the temporal evolution of the system, we 
must actually carry out several independent realizations or “runs,” each starting 
with the same initial set of molecules and proceeding to the same time t. If we make 
K runs in all, and record the quantities 

Xi@, t) = the number of Si molecules found in run k at time t, 
(k = l,..., K) (19) 

then we may assert that the average or expected number of Si molecules at time t 
is [cf. (9) and (lOa)] 

Xi’l’(t) N (l/K) i X,(k, t), 
k=l 

and the root-mean-square magnitude of the f fluctuations which may reasonably 
be expected to occur about this average is [cf. (9) and (lob)] 

di(t) N (l/K) 2 [Xi(k, t)]” - 
I 

(l/K) f Xi(k, t) 
k=l k=l 

The N signs in (20) and (21) become = signs in the limit K + co. However, 
the fact that we obviously cannot pass to this limit of infinitely many runs is not 
a practical source of difficulty. On the one hand, if Ai < X!“(t), then the results 
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&(k, t) will not vary much with k; in that case the estimate of X:“(t) would be 
accurate even for K = 1. On the other hand, if d,(t) 2 X,“)(t), then a highly 
accurate estimate of X/l’(t) is not really necessary; of more practical significance 
and utility in this case would be the approximate range over which the numbers 
X,(k, t) are scattered for several runs k. In practice, somewhere between K = 3 
and K = 10 runs should provide a statistically adequate picture of the state of 
the chemical system at time t. 

5. IMPLEMENTING THE MONTE CARLO STEP 

The description of our simulation algorithm given in the preceding section is 
complete, except for the details of how to carry out Step 1. In this section we shall 
present two different procedures, which we shall call respectively the direct method 
and the jirst-reaction method, for implementing this crucial “Monte Carlo step.” 
As we shall see, both of these methods are rigorous and exact, but if the number of 
reactions M exceeds 3 then the direct method should be a bit more efficient. 

The term Monte Carlo is currently applied to a large and diverse collection of 
computational procedures. A standard reference work on this many-faceted subject 
is the book of Hammersley and Handscomb [9]. However, for a nonspecialist’s. 
introduction to the general theory and methods of generating random points 
according to a prescribed probability density function (which is the task before 
us here), the reader is referred to [IO, Chap. 21. Relevant portions of that reference 
are summarized in our text and Appendix. 

Most large digital computer facilities have available a short routine which will 
generate on call a random number (or more properly, a “pseudorandom” number) 
from the uniform distribution in the unit interval [ll, 121. We shall denote such 
a random number by r. By definition, the probability that a generated value r will 
fall inside any given subinterval of the unit interval is equal to the length of that 
subinterval, and is independent of its location: 

For o<a<p<1, Prob{cu < r < j?> = /3 - CL (22) 

We shall take it for granted here that we have ready access to some such “uniform 
random number generator.” Our object now is to develop methods for using the 
output values r of a uniform random number generator to generate a random pair 
(T, r-l> according to the probability density function P(T, p) in (17). 

A. The “Direct” Method 

The first method we shall discuss is based on the fact that any two-variable 
probability density function can be written as the product of two one-variable 

581/22/4-2 
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probability density functions, a procedure known as “conditioning.” We shall 
condition P(T, p) in the form 

JYT, PI = PlW * P,(P I 4. (23) 

Here, PI(~) do is the probability that the next reaction will occur between times 
t + T and t + T + dr, irrespective of which reaction it might be; and Pz(p 1 T) 

is the probability that the next reaction will be an R, reaction, given that the next 
reaction OCCUrS at the t + 7. 

By the addition theorem for probabilities, PI(~) dT is obtained by summing 
P(T, p) dT over all p-VdUeS; thus, 

PI(T) = c” Pb, P). 
!.L=l 

Substituting this into (23) and solving for I’& 1 T) gives 

pz(cL 1 7) = P(Ts P)/$l P(T, “1. 

These two equations evidently express the two one-variable density functions in 
(23) in terms of the given two-variable density function P(T, p). Substituting 
P(T, p) from (17) yields at once 

Pi(T) = a exp(--aT) (0 < 7 < a), W) 

PdP 1 7) = ‘%/a (CL = 1, L., Ml, (24b) 

where we have for convenience abbreviated 

a, = h,c, (p = 1, 2,..., M) (25) 
and 

a E iI au = ;l h,c, . (26) 

We observe in passing that, in this particular case, P,(p I T) is independent of 7. 

We also note that, as we should expect, both of these one-variable density functions 
are properly normalized over their respective domains of definition: 

La pi(T) dT = SD a exp(--aT) dT = 1; c” P& j 7) = c” a,/a = 1. 
0 lL=l u=l 

The idea of the “direct method” is to first generate a random value T according 
to pi(T) in @la), and then generate a random integer p according to P& 1 T) 

in (24b). The resulting random pair (T, p) will be distributed according to P(T, P).~ 
5 For a formal proof and a more general discussion of this procedure, see [lo, pp. 23-351. 
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As we show in the Appendix (cf. (A4)), a random value T may be generated 
according to PI(~) in (24a) by simply drawing a random number r, from the 
uniform distribution in the unit interval and taking 

7 = (l/a) ln(l/r,). GW 

Then, as we also show in the Appendix (cf. (A7)), a random integer p may be 
generated according to P,(p 1 T) in (24b) by drawing another random number r2 
from the uniform distribution in the unit interval and taking p to be that integer 
for which 

u-1 

C a, -c r2a G 5 a, ; 
v=l v=l 

Wb) 

i.e., the successive values a, , a2 ,... are cumulatively added (in a computer do- 
loop) until their sum is observed to equal or exceed r2a, whereupon p is then set 
equal to the index of the last a, term added. 

In summary, the “direct” method for generating a random pair (7, p) according 
to P(T, CL) is to draw two random numbers r, and r2 from our uniform random 
number generator, and then calculate T and p from (27a) and (27b), respectively. 
To carry out this procedure in the most efficient manner, we should store not only 
the M quantities {a,} = {h,c,} but also their sum a. Then, in the course of updating 
the {a,,} values after each reaction, we may also update a by simply subtracting 
each old a,-value and adding the corresponding new one. 

Given a fast, reliable uniform random number generator, the above procedure 
can be easily programmed and rapidly executed. The direct method is therefore 
a simple, fast, rigorous procedure for implementing Step 1 of our simulation 
algorithm. 

B. The “First-reaction” Method 

We now present an alternate method for implementing Step 1 of our simulation 
algorithm. Although this method is usually not quite as efficient as the direct 
method, it is worth discussing here because of the added insight it provides into 
our stochastic simulation approach. 

Using the notation a, = hVcY adopted in Section 5A, it is a simple matter to 
show from (13) that 

P,(T) dT = exp(--a,T) * a, dT (28) 

wouZd be the probability at time t for an R, reaction to occur in the time interval 
(t + T, t + T + dT), were it not for the fact that the number of R, reactant com- 
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binations might be altered between times t and t + T by the occurrence of other 
reactions. This being the case, let us generate a “tentative reaction time” T, for 
reaction R, according to the probability density function P, in (28), and in fact 
do the same for UN reactions {R”}. Thus, in accordance with (A4), we put 

(v = 1, 2 )...) M), (294 

where rV is a random number from the uniform distribution in the unit interval. 
From these A4 tentative reactions, we choose as the actual next reaction the one 
which occursjirst; i.e., we take 

7 = smallest 7, for all v = 1, 2 ,..., M; 

p = v for which T, is smallest. 
V’b) 

We shall now prove that this method of generating a random pair (T, ,u), which 
we shall call the “first-reaction method,” is in fact a completely correct way of 
implementing Step 1 of our simulation algorithm. Our proof will consist of showing 
that the probability density function for the random pair (7, p) generated according 
to this procedure coincides with the function P(T, p) in (17). 

Let P(T, tL> dr be the probability that the procedure described above will result 
in the next reaction being an R, reaction and occurring in the time interval (t + T, 

t + 7 + dT). From (29b) we may evidently write this probability as 

&T, /a&) dT = PrOb{T < 7, < 7 + dT] X Prob{T, > 7, ah v # p}. (30) 

From (28) we see that the first factor here is just 

PrOb(T < r,, < 7 + dT) = eXp(-a,T) * a, dT. @la) 

For the second factor in (30), we have from (29a) that 

Prob{T, > T, all v # CL) = Prob{(l/a,) ln(l/r”) > 7, all v # p} 

= Prob{r, < eXp(-C&T), all v # CL} 

= fi Probfr, < exp(-a”T)}, 
a-1 
V#U 

where the last step follows from the fact that the random numbers r, in (29a) are 
independent of one another. Now, rV is a random number from the uniform distri- 
bution in the unit interval, so the probability that it will be less than a given number 
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between 0 and 1 is just equal to that given number (cf. (22) for 01 = 0). Thus we 
obtain 

Prob{r” > T, all v # p} = fi exp(-aVT). 
v-1 
V#U 

WV 

Now inserting (31a) and (31b) into (30), we get 

P(T, p) d7 = a, d7 - fi eXp(-t&T) 

v=l 

= a, exp 

or, with (17) and the definition a, = h,c, , 

P(T, /L) dr = P(T, /L) dT. (32) 

Thus, the first-reaction method, as defined through (29a) and (29b), is indeed a 
legitimate way to implement Step 1 of our simulation algorithm. 

It is tempting to try to extend this method by letting the “second next” reaction 
be the one for which 7” has the second smallest value. However, that would not 
be legitimate, because the prospects for that second reaction will usually be altered 
by the changes in the molecular population caused by the tist reaction, and these 
altered prospects are not taken into account by the proposed simple extension of 
the first-reaction method. For example, using the second earliest reaction would 
in principle allow the second reaction to involve molecules already destroyed in 
the first reaction, yet would not allow the second reaction to involve molecules 
created in the first reaction. 

The tist-reaction method is of course just as rigorous and exact as the direct 
method. It is probably easier to code for a computer than the direct method, 
and in many respects it is intuitively quite appealing. However, the first-reaction 
method evidently requires M separate random numbers from the uniform random 
number generator in order to effect each molecular reaction, whereas the direct 
method always requires only 2; hence, for M > 3 the first-reaction method will 
be wasteful of random numbers. This is an important consideration, because all 
pseudorandom number generators have a limited output capacity, and even the 
direct method is going to tax the random number generator quite heavily. In 
addition, the first-reaction method will be slower for large M, since the computer 
needs more time to calculate M logarithms (cf. (29a)) than to add M terms (cf. 
(27b)). Therefore, for M > 3 the direct method is probably the method of choice 
for implementing Step 1 of our simulation algorithm. 
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6. AN EXAMPLE 

To describe our simulation algorithm in more concrete terms, let us consider 
a spatially homogeneous system composed of four chemical species, W, X, Y and 2, 
subject to the following set of six coupled chemical reactions: 

Cl 
X+Y , 

52 

2&z, 
c4 

(334 

(33’4 

w+xzzx. 
% 

(33c) 

We suppose that the values of the six reaction parameters c1 ,..., c6 are given, as 
are also the initial numbers of molecules, W, , X0 , Y, , Z, , of the respective chemi- 
cal species inside the containing volume V. We shall not undertake here any 
actual numerical calculations of the behavior of the system for specific values of 
these input parameters; however, we shall describe in some detail a Fortran 
program which employs our stochastic simulation algorithm to effect such cal- 
culations. Before we do this, though, let us see how this problem looks from the 
viewpoints of, first, the deterministic reaction rate equations, and second, the 
stochastic master equation. 

In the deterministic approach we would regard the cU’s as reaction “rates,” 
and we would represent the numbers of W, X, Y, and Z molecules in V at time f 
by continuous functions, say W(t), X(t), Y(t) and Z(t). We would then try to obtain 
these four functions by solving the following set of coupled ordinary differential 
equations, subject to the initial condition W(0) = W, , X(0) = X0, Y(0) = Y,, , 
Z(0) = z, : 

dW/dt = -c,WX -I- &,X2, Wa) 

dX/dt = -c,X + c,Y - c3X2 + 2c,Z + c5 WX - &,X2, Wb) 

dY/dt = c,X - c2Y, (34c) 

dZ/dt = &,X2 - c,Z. (344 

These equations are perhaps more familiar when expressed in terms of the con- 
centrations w E W/V, x = X/V, etc., and the reaction rate constants k, as dis- 
cussed in Section 2; e.g., the first equation is evidently equivalent to dw/dt = 
-k,wx + k,x2, where k, = Vc, and k, 3 Vc,/2. Either way, though, the set of 
equations does not appear to be solvable in closed form by purely analytical 
methods, so we would probably attempt a numerical solution by using a finite- 
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time-step algorithm on a digital computer. However, the nonlinear character of 
the set of reactions in (33) may give rise to “multiple steady states”for certain ranges 
of the input parameters [6, 7, 81; when these occur, the chemical behavior of the 
system cannot be reliably predicted within the framework of the deterministic 
formulation. 

The usual stochastic approach begins by focusing attention on the probability 
function 9(W, X, Y, 2; t), which is defined to be the probability of tiding W 
of the W-type molecules and X of the X-type molecules, etc., inside V at time t. 
By applying the standard rules of probability theory, it is a straightforward matter 
to deduce from (3) the master equation 

In principle, this time-evolution equation can be solved subject to the given initial 
condition sll( W, X, Y, Z; 0) = 6 6 6 6 w*wo x,x0 Y.Y, z.z, to obtain 9( W, X, Y, Z; t) 
uniquely for all t > 0. In practice, however, this equation is virtually intractable. 
Notice that even a computer solution by a finite-time-step procedure is out of the 
question here, because of the astronomical amount of computer memory that would 
be required just to store the current values of the function 9’ on the 4dimensional 
integer lattice space of the variables W, X, Y and Z. 

We can, however, numerically analyze this problem within the framework 
of the stochastic formulation by using our simulation algorithm. Below is a Fortran 
program (minus format statements) which will cause a digital computer to simulate 
the time evolution of the given chemical system from time tl to time t2, printing 
out the numbers of W, X, Y, and Z molecules found inside V at successive time 
intervals of tint : 

C PRRIGRAM T0 SIMULATE REACTIONS (33). 
DIMENSI0N C(6), A(6) 

1 READ((C(MU), MU = 1, 6), T, W, X, Y, Z, T2, TINT) 
TPRINT = T 
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10 A(1) = C(1) *X 
A(2) = C(2) * Y 
A(3) = C(3) * X * (X - 1.)/2. 
A(4) = C(4) * Z 
A(5) = C(5) t W * X 
A(6) = C(6) * x * (X - 1.)/2. 
A0 = AU) + A(2) + A(3) + A(4) + A(5) + A(6) 

20 CALL URN(R1, R2) 
21 T = T + ALIZIG(l./Rl)/AO 
22 IF (T .LT. TPRINT) GO TO 25 
23 PRINT(TPRINT, W, X, Y, Z) 

TPRINT = TPRINT + TINT 
G0 TO 22 

25 R2AO = R2*AO 
SUM = 0. 

26 D029NU = 1,6 
MU=NU 
SUM = SUM + A(NU) 
IF (SUM .GE. R2AO) GO T0 30 

29 CONTINUE 
30 GO T0 (31, 32, 33, 34, 35, 36), MU 
31 X=X-l. 

Y=Y+l. 
G0T04O 

32 X =X + 1. 
Y=Y-1. 
G0T04O 

33 x = x - 2. 
Z=Zfl. 
GOT040 

34 x = x + 2. 
z=z-1. 
G0T04O 

35 x=x+ 1. 
w=w-1. 
GO T0 40 

36 X = X - 1. 
W=Wfl. 

40 IF (T .LT. T2) G0 TO 10 
ST0P 
END 
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The fact that this short, simple computer program, which requires only 27 
memory locations for its variables, can exactly simulate the process described 
by the complicated master equation (35) illustrates a prime virtue of our simulation 
algorithm. Let us now describe the workings of this program in detail. 

The system’s time is denoted by the variable T, and the numbers of species 
molecules inside Vat time Tare denoted by the respective variables W, X, Y and 2. 
In statement 1 the values of the externally specified parameters are read in as 
follows: the six reaction parameters c, ,..., cs are read into C(l),..., C(6); the initial 
time t1 is read into T; the numbers of molecules at the initial time tl are read into 
W, X, Y, and Z; the stopping time tz is read into T2; and the time interval tint 
between computer printouts is read into TINT. The magnitudes of these externally 
specified parameters are largely arbitrary; they will affect the total running time of 
the program, but not its memory storage requirements. Following statement 1 
the variable TPRINT is initialized; this variable simply keeps track of the times 
at which computer printouts of the molecular population are to be made. 

The main computational sequence is entered at statement 10. Here we proceed 
to evaluate for the current molecular population the quantities a, ,..., a, (denoted 
by AU),..., A(6)) according to (25) and (14), and also the quantity Q (denoted by AO) 
according to (26). Next, in statement 20 we call subroutine URN, which returns 
two independent random numbers Rl and R2 from the uniform distribution in the 
unit interval.6 Rl and R2 correspond to the random numbers r, and r2 in the 
“direct method” generating formulas (27a) and (27b). In statement 21 we increase 
the current value of T by the amount 7 as given in (27a); this brings the system 
clock up to the occurrence time of the “next” reaction. In statement 22 we check 
to see if T has just been advanced beyond the next printout time; if it has, we print 
out the molecular populations at that print-out time before proceeding. (The 
program is arranged so that the initial molecular population will always be printed 
out.) The determination of just which reaction R, occurs at time T is accomplished 
by the seven statements beginning at statement 25. Here, according to the prescrip- 
tion of (27b), the values a, , a2 , etc., are successively added together until their 
sum is observed to equal or exceed r,a (denoted by R2AO), whereupon the reaction 
index p (denoted by MU) is set equal to the index of the last a, term added. State- 
ment 30 then branches to the specific statements which effect the occurrence of 
one R, reaction by appropriately altering the molecular population. For example, 

6 See Refs. [9, 111 and (especially) [12] for ways of constructing subroutine URN for specific 
digital computers. The name URN is suggested for two reasons. First, as an accronym for “Uniform 
Random Number Generator,” it emphasizes the sometimes unappreciated fact that “uniform- 
ness” and “randomness” are not logical concomitants, and that one can also legitimately have 
a set of random numbers distributed according to a nonuniform or biased distribution. Second, 
the urn is the container traditionally used by classically refined statisticians to “hold” random 
numbers for subsequent “drawings “-precisely its function in our program. 
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if MU = 4 we branch to statement 34, which increases the number of X molecules 
by 2 and decreases the number of 2 molecules by 1, in accordance with the inverse 
of reaction (33b). Then, if T has not reached the stopping time T2, we return to 
statement 10 to recalculate A(l),..., A(6) and A0 for the new molecular population, 
in preparation for the simulation of the next molecular reaction. (We have not 
bothered here to program around unnecessary recalculations of the A(NU) 
quantities; e.g., if MU = 4 on the last reaction then Y will not have been changed 
and A(2) need not be recalculated. For a larger system it would undoubtedly pay 
to avoid such redundancies.) The program repeatedly cycles’from statement 10 
to statement 40, simulating each successive molecular reaction in turn until T 
has finally been advanced to time T2, whereupon the program terminates. 

By running the program several times with the same input parameters, but 
different initializations of subroutine URN, we may obtain means and variances 
in the manner of (20) and (21). Alternatively, we may simply wish to follow the 
temporal behavior of the system to see if and how a steady state is approached, 
and if and how transitions between multiple steady states occur. Notice that any 
of the six reactions can be blocked out simply by setting its reaction parameter to 
zero. It is also easy to artificially hold the number of molecules of any species 
constant; e.g., if we wished to keep the number of Y molecules constant, reflecting 
perhaps a very large population of Y molecules which is not appreciably affected 
by the reactions, then we would simply remove the two statements following state- 
ments 31 and 32, respectively. Clearly, a wide variety of interesting dynamical 
features of the set of coupled chemical reactions in (33) can be investigated with 
this stochastic simulation program. 

7. SUMMARY AND DISCUSSION 

In this paper we have presented a relatively simple procedure for calculating the 
time evolution of any spatially homogeneous chemical system in which the 
dynamics of the chemical reactions R, can be characterized in the manner of (3). 
Equation (3) is the fundamental postulate of the stochastic master equation 
approach to chemical kinetics, in which the dynamics of the chemical system is 
regarded as a Markov process in the space of the species population numbers. 
In Section 2 we argued that this stochastic approach ought to be valid whenever 
nonreactive molecular collisions occur much more frequently than reactive 
molecular collisions. We also discussed in Section 2 the relationship between the 
reaction parameter c, , defined in (3), and the more familiar reaction rate constant 
k, , which forms the basis of the deterministic approach to chemical kinetics. We 
concluded that algebraically the relationship between c, and k, is quite simple, 
but conceptually c, appears to be on somewhat firmer ground than k, . 
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The computational procedure presented here is a systematic, computer-oriented, 
Monte Carlo algorithm, which directly simulates the Markov process defined by (3). 
However, the simulation algorithm is based, not on the master equation, but on 
the “reaction probability density function” P(T, CL) defined in (11). Given a specified 
population of molecules at time 0, the simulation algorithm is executed as follows: 
First, the function P(T, p) for the current molecular population is determined in 
accordance with (17); second, using either of the two Monte Carlo methods (27) 
or (29), a pair of random numbers (7, p) is generated according to this density 
function; and third, the time variable is advanced by T, and the molecular 
population is adjusted to reflect the occurrence of one molecular reaction R, . 
By repeatedly cycling through these three steps, we may work our way from time 0 
to any specified time t > 0, and thereby obtain one stochastically unbiased state 
of the chemical system at time t. By examining the outcomes of several such runs, 
each of which starts from the same initial state and proceeds to the same time t, 
we may deduce both the mean state and time t and also the approximate magnitude 
of the random jluctuations that may reasonably be expected to occur about this 
mean state. This computational procedure was described more concretely in 
Section 6, where we presented a Fortran program implementing the simulation 
algorithm for a sample set of coupled chemical reactions. 

Our derivation of the mathematical form of P(T, tL> from the fundamental 
hypothesis (3) does not involve any additional assumptions or approximations 
(see Section 3). Furthermore, our methods for generating random T and p values 
commensurate with P(T, CL> are likewise completely rigorous (see Section 5 and 
the Appendix). Consequently, our numerical simulation algorithm may be regarded 
as exact. By contrast, the commonly used numerical algorithms which solve the 
deterministic reaction rate equations must be considered as approximate for two 
reasons: first, the reaction rate equations themselves are approximate, relative to 
(3), because they ignore effects due to correlations and fluctuations; and second, 
virtually all numerical methods for solving sets of coupled differential equations 
entail approximating infinitesimal time increments dt by finite time steps At. 

It turns out that, for most macroscopic chemical systems, the neglect of corre- 
lations and fluctuations is a legitimate approximation [2, 31. For these cases the 
deterministic and stochastic approaches are essentially equivalent, and one is free 
to use whichever approach turns out to be more convenient or efficient. If an 
analytical solution is required, then the deterministic approach will always be much 
easier than the stochastic approach. However, if one is forced to settle for a 
numerical solution, then the choice between the two approaches should be con- 
siderably more even. In particular, it may (or may not) turn out that our stochastic 
simulation algorithm offers a convenient way around the so-called “stiffness” 
difficulty that occurs with the coupled differential reaction rate equations when the 
reaction rates range over many orders of magnitude. 
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For spatially homogeneous systems that are driven to conditions of chemical 
instability, correlations and fluctuations will give rise to transitions between non- 
equilibrium steady states, and the usual deterministic approach is incapable of 
accurately describing the time behavior. Among the pioneering investigations into 
this interesting area of chemical kinetics are the recent works of McNeil and Walls 
[6], Nitzan et al. [7], and Matheson et al. [8], all of whom have made use of spatially 
homogeneous master equations to study chemical instabilities in certain simple 
systems. Our stochastic simulation algorithm is directly applicable to these studies, 
and it should be especially useful for extending them to more complex systems 
involving many chemical species and many highly coupled chemical reaction 
channels. 

The principle source of computational inaccuracy in our simulation algorithm is 
the limited “randomness” of the particular unit-interval uniform random number 
generator that is used. It is known, for example, that so-called simple multiplicative 
congruential generators exhibit nonrandom pairwise correlations between 
successively generated values. Since our procedure normally uses successive random 
numbers in pairs to calculate the T and p values for each reaction, it would probably 
be more prudent to use a “compound” multiplicative congruential generator, which 
randomly mixes two or more of the simple ones [12]. The “resolution” of the 
generator, or the number of decimal digits to which the generator can be regarded 
as being effectively random, is an important consideration. For example, an 
n-digit generator may have trouble reliably sampling any reaction R, which has 
a relative probability a,/a less than lo-“. Another important property of a uniform 
random number generator is its “period,” or how many values it will put out before 
it starts repeating itself. The period can obviously never be greater than the word 
size of the computer, but in most cases the period will be considerably less than 
this. It is not necessarily fatal if the generator cycles several times during the course 
of a long run, but too many cycles can obviously lead to spurious results. This 
writer frankly regards the construction of computer codes to generate uniform 
random numbers as a gray (if not black) art, which is best entrusted to experts 
in the field [12]. Fortunately, the present state of this art is quite good, and will 
probably improve with time. 

The computer storage space required by our simulation algorithm is quite small. 
This is an important consideration, since charges at most large computer facilities 
are based not only on how long a job runs but also on how much memory storage 
is used. However, since our algorithm simulates the occurrence of each individual 
molecular reaction, it places a considerable premium on the speed of the computer. 
In general, the required computation time will be directly proportional to the number 
of individual molecular reactions that actually take place in the system. This must 
be kept in mind when specifying the initial molecular population and the containing 
volume V. Another point to bear in mind in this connection is that our algorithm, 



SIMULATING COUPLED CHEMICAL REACTIONS 429 

like Nature, deals only with whole numbers of molecules; thus, for example, if 
species Si is to be present only in several parts per million relative to species S, , 
then the initial number of S, molecules should be larger than 106. 

It was brought to the author’s attention by one of the referees that the simulation 
algorithm presented here is similar to a computational scheme used earlier by 
Bunker et al. [13]. In terms of present notation, Bunker et al. use the same p-selec- 
tion rule as in (27b), but they replace the T-selection rule in (27a) by simply T = l/u. 
Since l/a is precisely the mean value of the T-distribution described by PI(r) 
in (24a), this substitution is not unreasonable, and we may expect that in many 
situations the consequent loss of fidelity will be slight enough to justify avoiding 
the computational effort of generating a random number r1 and taking the 
logarithm of its reciprocal; in fact, if one is interested on/y in finding the steady 
states of a system, one may simply dispense with the T-selection process altogether. 
{Of course, the use of the mean T-step instead of the properly randomized T-Step 

will not eliminate the need to carry out several independent runs when averages 
are desired.) In their paper, Bunker et al. characterize their computational pro- 
cedure as a “hybrid method, intermediate between differential equation solution 
and Monte Carlo,” which it clearly is; however, they derive their method in a 
heuristic way within the context of the deterministic reaction rate formalism. 
By contrast, the computational procedure presented here is an “exact method,” 
which has been derived in a mathematically rigorous way from very fundamental 
physical considerations. This analysis has made it quite clear that the underlying 
dynamics of a chemically reacting system in thermal equilibrium is stochastic rather 
than deterministic, and consequently the stochastic approach (as exemplified 
analytically by the spatially homogeneous master equation and numerically by 
our stochastic simulation algorithm) provides an intrinsically better description 
of the system’s behavior than does the deterministic set of coupled reaction rate 
equations. In particular, no apologies need be made for the fluctuations that occur 
in a (correctly done) Monte Carlo simulation, since these fluctuations are really 
present, and can in some cases give rise to macroscopically observable effects; 
and in those cases in which fluctuations turn out to be unimportant, that fact too 
will emerge quite naturally from the calculations themselves. In a sense, then, 
our work here has placed the hybrid method of Bunker et al. in the context of a 
more rigorous framework, thus providing an a priori means of assessing its validity. 
Clearly, though, the procedure of Bunker et al. is intrinsically more legitimate than 
any computational scheme which is based on the deterministic reaction rate 
equations-a point that was not obvious from their original work [13]. 

Finally, we make note of three possible variations or extensions of the compu- 
tational procedure offered here. First, we observe that the expressions for h, 
in (14) for the various reaction types listed in (2) follow from the definition given 
in (12). However, if one has legitimate physical reasons for assuming that h, for 
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any reaction has a dzxerent form than required by (14), involving perhaps fractional 
powers of the numbers of reactant molecules, it is obviously a simple matter to 
alter h, accordingly in our computational procedure. Indeed, it will be observed 
that h, and c, are used in our simulation algorithm only in the combination 
h,c, = a,, . It follows that our simulation algorithm requires onZy that the proba- 
bility on the right side of (13) be expressible as a, St, where Q, can be any specified 
function of the current molecular population, the physical properties of the mole- 
cules, and the thermal environment of the system. 

Second, we note that if the temperature dependencies of the reaction parameters 
(c,) are known, as for example in (6), then our simulation algorithm can be extended 
to accommodate a time-varying temperature. However, any change in the 
temperature must be slow enough that the entire system may always be regarded 
as having a single temperature, and also slow enough that the temperature change 
between successive molecular reactions be negligibly small. The temperature 
change may either be externally caused, such as the diurnal temperature changes 
induced in an atmospheric chemical system; or, it may be caused by the heat 
absorbed or released in the chemical reactions themselves, a phenomenon that is 
especially easy to account for in our one-reaction-at-a-time approach. In either 
case, by monitoring the net heat flow into or out of the system, the system tem- 
perature may be constantly adjusted on the basis of an assumed system heat 
capacity. The resulting temperature changes may be taken into account by peri- 
odically updating the reaction parameters {c,}, and the associated quantities (a,} 
and a, as necessary. 

Finally, we describe a modification of our simulation algorithm which, although 
rather awkward, might allow one to deal in an approximate way with spatial 
inhomogeneities. The basic idea is to divide the volume V into a number of sub- 
volumes V, (I = 1, 2,..., L) in such a way that spatial homogeneity may be assumed 
within each subvolume. Each subvolume V, would then be characterized by its 
own (uniformly distributed) molecular population {XL,,>, and also a set of reaction 
parameters {clsi} appropriate to the (uniform) temperature TC inside V, . The 
diffusive transfer of one molecule of species Si from the subvolume VL to a con- 
tiguous subvolume V,, could be simulated by the simultaneous occurrence of the 
type (2b) reaction Si -+ 0 in I/, and the type (2a) reaction * + Si in VL, : 

The probability coefficient a, = h,c, for this “species-i diffusive transfer reaction” 
might conceivably have the form 
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where d,,, is the center-to-center distance between subvolumes V, and V,, , All* 
is the interfacing area between these two subvolumes, and Dz is an appropriately 
scaled molecular diffusivity for chemical species Si . The transfer of thermal energy 
between contiguous subvolumes might perhaps be effected by the methods outlined 
in the preceding paragraph. The dynamics of the system as a whole would be 
governed by a suitably generalized form of the reaction probability density function. 
One likely candidate for this would be the function defined by 

P(T, p, I) d7 = probability at time t that the next reaction in V will 
occur in the time interval (t + T, t + 7 + d7), and (37) 
will be an R, reaction inside the subvolume V, . 

The simulation would then proceed by applying our Monte Carlo methods to 
generate random triplets (T, p, r) according to this three-variable probability density 
function. For extensive, complicated systems this approach would probably be 
impractical because of the large number of subvolumes required and the resulting 
plethora of reaction channels, particularly those channels controlling diffusive 
transfers between contiguous subvolumes. However, this approach might be quite 
feasible for a system confined to a tubular volume in which the gradients are small 
and entirely along the tube axis; in that case each subvolume would have only two 
neighbors. For the present, though, attempts to extend our simulation algorithm 
to spatially inhomogeneous systems seem rather premature, and probably should 
await a more precise determination of the domain of feasibility of the algorithm 
for spatially homogeneous systems. 

APPENDIX: THE INVERSION GENERATING METHOD 

Equations (27a), (27b), and (29a) are applications of a general Monte Carlo 
technique called the “inversion method,” whereby one uses random numbers 
from the uniform distribution in the unit interval (see (22)) to construct random 
numbers distributed according to any prescribed probability density function. 
In this Appendix we review this well-known generating technique for both con- 
tinuous-single-variable and discrete-single-variable probability density functions. 
The application of the inversion method to multivariable probability density 
functions is discussed in [lo, Chap. 21. 

Suppose we wish to generate a random real number x according to the proba- 
bility density function P(x). By definition, P(Y) dx’ is to be the probability that x 
will lie between x’ and x’ + dx’. Consider the function 

F(x) z /* P(x’) dx’. 
-m 641) 
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Evidently, I;(x,,) is the probability that x will be less than x,, . The function F(x) 
defined by (Al) is called the probability distribution function, and is to be clearly 
distinguished from the probability density function P(x). Notice that 

F(-co) = 0 and F(+oo) = 1; WI 

the second equality is the “normalization condition,” which expresses the fact 
that every random x has got to be someplace. Notice also that, since P(x) is every- 
where nonnegative, then (Al) implies that F(x) rises from 0 at x = -cc to 1 at 
x = + co in a nondecreasing way. 

The inversion method for generating a random value x according to a given 
density function P(x) is simply to draw a random number r from the uniform 
distribution in the unit interval, and take for x that value which satisfies F(x) = r; 
in other words, take 

x = F-l(r), (A3) 

where F-l is the inverse of the distribution function corresponding to the given 
density function P. (Note that the range and monotonicity of F(x) insure the 
existence of F-l(r) in 0 < r < 1.) 

To prove that this procedure is correct, let us calculate the probability that the 
x-value so generated will lie between x’ and x’ + dx’. By construction, this 
probability is the same as the probability that r will lie between F(x’) and 
F(x’ + dx’). Since r is a random number from the uniform distribution in the unit 
interval, then by (22) this probability is just 

F(x’ + dx’) - F(x’) = F’(x’) dx’ = P(x’) dx’, 

where the second equality follows from (Al). We conclude, then, that the proba- 
bility density function for the random number x generated according to (A3) is 
indeed P(x). 

For example, suppose we wish to generate a random number x according to the 
probability density function 

P(x) = A exp(--dx), for 0 < x < cc, 

= 0, otherwise, 
(AW 

where A is a positive constant. Using (Al), we easily calculate the corresponding 
probability distribution function to be F(x) = 1 - exp(--dx). Then putting 
F(x) = r and inverting (and for simplicity replacing the random variable 1 - r 
by the statistically equivalent random variable r), we obtain 

x = (l/A) ln(l/r) (A4b) 
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as the rule for generating a random number x according to the probability density 
function P(X) in (A4a). This is the formula used in (27a) and (29a). 

In the discrete case, the problem is to generate a random integer i according to 
the probability density function P(i), where P(i’) is now the probability that i 
will equd i’. The corresponding distribution function F(i) is defined by 

F(i) = i P(i’), 
(‘=-UI 

(A% 

and F(i,) is evidently the probability that i will be less than or equal to i,, . 
The inversion method for generating i according to P(i) is to draw a random 

number r from the uniform distribution in the unit interval and take for i that value 
which satisfies 

F(i - 1) -=c r < F(i). 646) 

To prove that this procedure is correct, let us calculate the probability that the 
resulting integer i will equal i’. This probability is just the probability that r will 
lie between F(i’ - 1) and F(C), and by (22) this probability is 

F(i’) - F(i’ - 1) = i P(Y) - ‘< P(Y) = P(i’). 
i’=--m i”---m 

This proves that P(i) is indeed the probability density function for the random 
number i generated according to the rule (A6). 

For example, suppose we wish to generate a random integer i according to the 
density function 

P(i) = aJ5 a, , 
j=l 

for i = 1, 2 ,..., M, 

= 0, otherwise, 

where the ai’s are nonnegative numbers. Then applying (A6) we see that we must 
choose i to be that integer for which 

i-l 

izl W'> < r G jl W> 

WV 

This is the generating formula used in (27b). 

SSdd4-3 
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