


Microscopic  picture: 
 

 
-coordinates and velocities of all 

particles, cars, cells, rabbits… 
 

Systems of ODE - ordinary 
differential equations 

Direct simulation methods  
Monte Carlo methods 

 

Macroscopic picture: 
average velocity field  
or density  field  
depending on position 
 

Navier - Stokes equation 
diffusion equation  
Shallow water equation 

Mesoscopic picture: 
 
 
- “number” of particles  

with velocities   
and positions  
 
Boltzmann equation  
Lattice – Boltzmann 
 equation 
neutron transport 





Distribution function 

Information  is required not only about the spatial  
distribution of molecules but about their velocities as well.    



Distribution function and macroscopic 
parameters 

- concentration 

- density 

- velocity 

-  energy 

- peculiar velocity 



Distribution function and fluxes 



Distribution function and fluxes 

- pressure tensor 

- normal stresses 

- shear stresses – force per unit area in        direction 
exerted on a plane surface with normal in         direction 

-hydrostatic pressure  

- heat flow vector 



Transport in absence of collisions 



The Boltzmann kinetic equation 

The Knudsen number Kn shows the relation between the  
collision frequency and the typical macroscopic time scale.   
In the limit of Kn 0 one observes the macroscopic behavior. 

(1844-1906) 



The Boltzmann collision operator (terrible formulas!)  



Collision invariants 

Collision invariants are functions            of particles velocities  
that are preserved during collisions.  
 
Typical examples are: 
 mass  m , momentum          and kinetic energy                . 
 
These conservation laws are expressed as: 
 

or 



Collision invariants: why these? 



Maxwell –Boltzmann equilibrium distribution  

has two important properties: it does not change under collisions 

It minimizes the H- function                                  
 
for fixed macroscopic velocity,  temperature and concentration. 
 
Functional                                            is called entropy  



Macroscopic equations 

To see how macro-parameters depend on time and position we use  
conservation laws corresponding to our system.  
We multiply the kinetic equation  

   

by collision invariants             and integrate it over velocities. 
Such an operation is called scalar product of functions in analysis. 
The integral over collision operator disappears and the rest gives us 
macroscopic equations.  
One says that the collision operator is orthogonal to collision invariants.   



Macroscopic equations 



Macroscopic equations 



How to find macroscopic fluxes  
corresponding to kinetic models? 
(and vise versa…) 



BGK model 

BGK model keeps most of formal properties of the 
Boltzmann equation: the same collision invariants, the same 
equilibrium, H – theorem, but has much simpler structure. 
Knudsen number Kn shows the relation between collision 
frequency and the typical macroscopic time scale. 
In the limit of Kn 0 one observes the macroscopic behavior. 



Chapman - Enskog method and  
method of diffusive scaling   

(…hard calculations!) 

David Enskog Sydney Chapman 

(1916, 1918) (1917, 1922) 



Transport coefficients: 

Viscosity, heat conduction and diffusion coefficients of 
real gases are rather complicated functionals of particular 
collision models (intermolecular potentials). The theory 
becomes even more complicated for mixtures of gases. 

The Chapman-Enskog theory shows that in the limit of  
Kn --> 0 density, velocity and temperature:  
 
satisfy up to the second order in Kn number, Kn0 classical 
macroscopic equations - Navier Stokes equations for 
compressible viscous gas. 
It is remarkable that this conclusion is valid both for the full 
Boltzmann equation and for the simplified BGK equation. 



Lattice Boltzmann equation 



          Distribution function    
             for discrete velocity space: 



Similarly the stress tensor is calculated: 











Lattice Boltzmann for advection – diffusion  





Lattice- Boltzmann  
algorithm:  
        -transport 



Lattice- Boltzmann  
algorithm: 
  -macroparameters 



Lattice- Boltzmann  
algorithm: 
       -relaxation 



Boundary conditions 



Boundary conditions for flow 

1) Bounce back boundary conditions imply 
zero (non-slip) velocity for flow and 

       zero total flux for diffusion. 
2) Fixed pressure (for flow) or density (for 

diffusion) 
3) Slip boundary conditions for flow: friction 

depending on tangential velocity 
4) Zero normal flux  of solute particles (no 

absorption) 
5)  Robin boundary conditions: normal flux is 

a function of the concentration on the 
wall (interaction with the structure)  

6) Mirror and periodic boundary conditions. 



Neumann (zero normal flux) boundary 
conditions for diffusion 

We wish to have a boundary condition of the 
type 
 
 
 
i.e. zero flux across the boundary. 
We need to assign values for the distribution 
function for the incoming velocities that 
intersect the boundary. 
We assign an equilibrium distribution at the 
solid nodes: 



The unknown density and flux are 
computed using a mirror point 
 
 
using a mirror rule for the flux 
 
 
 
Values are interpolated to the mirror 
point from neighboring grid nodes. 
Normals nj and distances qj are averages 
from intersection points. 

Neumann (zero normal flux) boundary 
conditions for diffusion 



Example: flow through a gel structure 





Parallel computations 
by domain decomposition  



Diffusion LBE. Diffusive scaling limit. (Hard calculations!)   

To make notations shorter we skip indexes after the discrete velocities        of particles 
and indexes after       for distribution functions and write              instead. 
Diffusive scaling means that we choose time scale:  

The differential equation corresponding to the diffusive scaling is 

To model diffusion we introduce the equilibrium function as: 

We introduce the asymptotic  expansion                                            to see the  
 
connection between the Lattice Boltzmann equation and the diffusion equation for 
small            =          and will compute corresponding diffusion coefficient. 



Diffusion LBE: continuum case.  

We put the expansion                                             into the equation 

and collect  terms of the same order, that gives equations  for                : 



Diffusion LBE: continuum case.  



Diffusion LBE: continuum case.  



First order terms in the expansion 



Diffusion equation as a compatibility 
condition of second order  

,  



Diffusion LBE: discrete case 



Diffusive limit. Discrete case (similar) 

- diffusion equation  

- diffusion coefficient 



Diffusion through EC/HPC(30%) film  

Example of diffusion 



Flow through a sample of EC/HPC(30%) film  

Example of flow 



Diffusion and flow streamlines   

As a result of computations we get a velocity field      for flow, and a flux field  

Streamlines for diffusion Streamlines for flow 

for diffusion and for advection – diffusion. Velocity here is zero in the pure diffusion 
case. Streamlines are computed by integration of ODE along these vector fields and 
show the average paths of fluid particles for the flow case and solvent particles in the 
diffusion case.  



Examples of multyphase flows. 

Three phase flow  Two phase flow and  
diffusion of the third phase 



Multy-phase flows. Shan Chen model 

- is common velocity of phases  

 is the sum of forces acting between different phases 

is responsible for phase separation 

is responsible for adhesion forces 



Interphase forces in the Shan Chen model 

 is the sum of forces acting between different phases 

For simple repulsion between different species the interactive force in a binary  
mixture can be chosen as: 

where        and         mark different  phases. 

Similarly the adhesion between fluid particles and the solid boundary can be chosen : 

Where        is  1  if  the node  i  is inside the solid and zero otherwise. 

To model a mixture of wetting and non-wetting  fluid               can be  chosen 

 positive for wetting fluid and   -              ( negative  with the same absolute value) 

for non-wetting fluid. 



Macroscopic equations corresponding to 
the Shan Chen model of multyphase flows 



The parameter         defines missible or immissible  character 
of multiphase flows  in the Shan Chen model. The thickness of 
the interface increases with decreasing            and fluids mix 
together  below certain threshold. 
 
 
The difference of pressure inside and outside of a bubble 
 satifies the Young – Laplace law : it is proportional to the  
curvature of the bubble 1/R.   


