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Systems of ODE - ordinary

differential equations
Direct simulation methods
Monte Carlo methods
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Part 1. Kinetic theory
Macroscopic, microscopic, mesoscopic paradigms.
Distribution function, macroscopic parameters, moments.
Collisionless transport without forces, with forces
Collisions: Boltzmann equation , conservation laws,
Equilibrium, entropy
BGK model.
Transport equations: integrate the kinetic equation.
Non closed macroscopic description.
Euler equation, diffusion equation, Navier Stokes equation.

Transport coefficients: viscosity and diffusion coefficient.

Part 2. Lattice Boltzmann model and simulation
Discrete velocity space. Lattice Boltzmann model.
Various grids. Symmetry requirements. Equilibrium distribution.
Lattice Boltzmann algorithm: advection, relaxation.
Boundary conditions. Neumann, Robin, slip boundary conditions.
Parallel computations.
Discrete viscosity and diffusion coefficients

Multy-phase flows. Shan Chen model. Free energy based models.

Examples
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Distribution function

Information is required not only about the spatial
distribution of molecules but about their velocities as well.

velocity distribution function, f(r, ¢, t)

f(r,c, t)d’rdc is the expected number of molecules

in the volume element d>r located at r,

whose velocities lie in d°c about velocity ¢



Distribution function and macroscopic
parameters

n(r, t) = [f(r, ¢,t)d’c. - concentration

p(r, t) = mn(r, f)- - density

v(r, t) = : fmcf(r, C, t) d’c. - velocity
p(r, 1)

= €C—70V - peculiar velocity

u(r, t) = - : f%mcz f(r, ¢, t) d3c, - energy
p(r, 1)



Distribution function and fluxes

',i J/f (' d2 i

Cylinder containing all molecules with peculiar velocity € which cross the
surface element d2S during the time interval dz.




Distribution function and fluxes

P, = mJ‘C‘JE Cﬂf d?c, - pressure tensor

-Paa: - normal stresses

P - shear stresses — force per unit area in ¢- direction
@B exerted on a plane surface with normal in ﬁ_ direction

%Pcz = %P + I.  -hydrostatic pressure

A
|

=
|

%mfczfc d’c = iInmC*C.

- heat flow vector



Transport in absence of collisions
fi(r, ¢;, Hdrd’c;
fi(r—_l-c_idt_, ¢;+F.dt, t+de)d*r'd’c
fi(r+c¢;dt, e;+F;dt, t+dt)d’rd’c;.

filr+e¢;dt, ¢;+F,dt, t+dt) = fi(r, ¢;, ).



The Boltzmann kinetic equation

Y7 (1844-1906)

fi(r+¢;dt, ¢;+F;dt, t+dt) = fi(r, ¢;, t)+ (af’) dt
l coll

(%) dt = (I =TI )dt.
coll

ot
(8 +¢;-V.+F;-V, )f(r c;, 1) =| — 1 (F;'—F:)
Ot Kn

] —
The Knudsen number Kn shows the relation between the

collision frequency and the typical macroscopic time scale.
In the limit of Kn =0 one observes the macroscopic behavior.



The Boltzmann collision operator (terrible formulas!)

/]RS/ B([ul,0)f (V( “W)>f("(u+uw)>dwdu

with g~ denoting the collision frequency term

:/RBf(v—u)/SEB(\u\,@)dwdu.

The function B(|u/,0) is of the form

B(|u|,0)= (u (", )>,uEIR3,wESz,Sz{qER3:q1}.

It contains the information about the binary interactions of particles

For the gas of “hard sphere” molecules B(|v—w|,0)=Cy|v—w|*



Collision invariants

Collision invariants are functions 1/(c) of particles velocities
that are preserved during collisions.

Typical examples are:
mass m, momentum mc¢ and kinetic energy %—mcz :

These conservation laws are expressed as:

[949 (Ge) e =

or /1#((:) (F+ — F_) dc =0



Collision invariants: why these?

(M —T7)(c) =
/R3 dcy /5,2 dwB(|c — ¢y, 0) {f(c)f(cl) — f(c’)f(c’l)]

/q,b(c) (F+ — F_) dc =

£/R3 dc/R3 dcq /52 dwB(|c —c1],0)x
F(e)f(e1) = F()F(eh)] [¥ () + ¢ (er) =% (/) + ¥ ()]

./‘1/)((:) (r* —r)dc=0



Maxwell —Boltzmann equilibrium distribution

(c —V)|?
2T

. T
T )2

n = n(t,x), v=v(t,x), T =T(t,x)

has two important properties: it does not change under collisions

afeq _ r+vr re _ r—( £¢ .
(375 )coll_r S =T =0

It minimizes the H-function H = fIn f

for fixed macroscopic velocity, temperature and concentration.

Functional —//fln fdcdx is called entropy



Macroscopic equations

To see how macro-parameters depend on time and position we use
conservation laws corresponding to our system.
We multiply the kinetic equation

(*‘a_ +ci * Vr'l‘Fi ‘ VC,:
Ot

) £ 1) =

R
1

Kn

—

(T

by collision invariants 1/(c) and integrate it over velocities.
Such an operation is called scalar product of functions in analysis.
The integral over collision operator disappears and the rest gives us

macroscopic equations.

i)

One says that the collision operator is orthogonal to collision invariants.



Macroscopic equations

When y = m, we obtain the conservation equation for mass,
opldt+V - pv = 0.

When ¢ = mc, we obtain the conservation equation for momentuni,

%(pv)+V°(P+pvv) = ). niF, (4
0 i

Finally, when { = 4mc* we obtain the conservation equation for kinetic
cnergy,

d
o P30 )+V (gt p(ut3o®)o+Poo} = Y piFi- (04V)  (4.1-26)
i



Macroscopic equations

_l_c_j__p_z —V v,

p dt
dv

p— = pF-V: P,
d¢

p-(-l-—!f-{= —(V-q+P :Vv).
dt

concept of substantial derivative,

d
~J=i+v-V,

dt ot



How to find macroscopic fluxes
corresponding to kinetic models?
(and vise versa...)



BGK model

O e fe X qpea_
e Vof = — [~ f]
: _n (c = V)|
f(t,x,c) = (27TT)3/2 exp { T

n = n(t,x), v=v(t,x), T =T(t,x)

BGK model keeps most of formal properties of the
Boltzmann equation: the same collision invariants, the same
equilibrium, H —theorem, but has much simpler structure.
Knudsen number Kn shows the relation between collision
frequency and the typical macroscopic time scale.

In the limit of Kn =0 one observes the macroscopic behavior.



Chapman - Enskog method and
method of diffusive scaling
(...hard calculations!)

David Enskog Sydney Chapman

(1917, 1922) (1916, 1918)

WHeneS  witene You
MWD UL MISTAKE."



Transport coefficients:

The Chapman-Enskog theory shows that in the limit of
Kn --> 0 density, velocity and temperature:

p = plx,t), v=v(t,x), T =T(t,x)
satisfy up to the second order in Kn number, Kn—=>0 classical
macroscopic equations - Navier Stokes equations for
compressible viscous gas.

It is remarkable that this conclusion is valid both for the full
Boltzmann equation and for the simplified BGK equation.

Viscosity, heat conduction and diffusion coefficients of
real gases are rather complicated functionals of particular
collision models (intermolecular potentials). The theory
becomes even more complicated for mixtures of gases.



Lattice Boltzmann equation

A kind of artificial particles with a small number

N of possible velocities ¢; with ¢« =0,1,2,..N
are used to describe the state of the fluid. The
state of the fluid In the point = at time ¢ Is
described by a distribution function as f;(x,t)
that gives the density of "particles" of each type
with velocity ¢; In point = at time ¢.

Macroscopic variables for flow - density(pressure)
p(x,t) and velocity v(x, t) are calculated in a nat-
ural way as the averages of f;(x,t) :
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Distribution function f;(x,t)
for discrete velocity space:
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Macroscopic variables - density p(x,t), velocity v(x,t)

are calculated in a natural way as the averages of f;(x,t) :

pla,t) = 3 fi(1)
?: \
(2.1) e DT GO == &
v(x, = c; f;lx, Wi
p(w,1)) 5 T/l
A B ’\
b BN S BE
Similarly the stress tensor is calculated: -

Pos(z.t) = (Cia— Va) (ci5— vg) filw,1)

1



Macroscopic variables for diffusion - density p(z, t)
and flux u(z,t) are calculated in a natural way
as the averages of f;(z,t) :

Z f@(fE, t) v g , T
1

p(x, 1)

A BN




The Lattice-Boltzmann equation describes changes
In f;(x,t) after a time step At:

filx+c;At, t+At) = f;(x, t)—l—% {f;q(tfb, t) — fi(x, t)}

The equilibrium distribution f:(z,t) depends only
on macroscopic variables density p(z,t) and ve-
locity v(x,t) and Is a polynomial of ¢; vectors.






In the case of flow the equilibrium distribution
[ (x,t) looks as

fitq(wa t) — Wy [}0 + (3’0 - C; T+ 5 (,U . Ci)2 — 5 |’U|2)]

Welights w; are some fixed numbers such that
> w; =1 and the fluid with distribution f;?has
(/

density p and velocity v that are used In the
expression for f;9.




Lattice Boltzmann for advection — diffusion

In the case of diffusion of a solute In a mov-
ing solvent the equilibrium distribution f{%(x,t)
looks as

fi 4w, t) = wip L+ (3v - ¢;)]
and the solute with distribution f;?has density
0.

Velocity v in the expression for f;? is the solvent
velocity.




Equiblibrium distribution is given by:

: 9 3
0 _ oprs . - )2
fi =nw; |1+ 2 u.v; + 204(u.v3) 2Czu.u .

The weights w; depend on the set of velocites. The values for commonly used models are
below.
For D2Q9 we have

2

6 2 5
4/9 =0
3 1 w;, =¢ 1/9 i=1,2.34
0 1/36 i=5.6.7.8
7 4 8
For D3Q15 the weights are:
2/9 =0
w; =< 1/9 i=1-6

1/72 i=7-14

For D.‘%QlQ the weig;ht:_»' are:
/3 i=0

wi =1 1/18 i=1-6
1/36 i=7-—18

For D3Q27 the weights are:

8/27 i=0
C)o2per i=1-6
TN 1/216 i =7 14

1/54 i=15-26



Lattice- Boltzmann -\/

algorithm: €=
-transport /1\

lllllllllll

1. Transport of "particles" or shift of data along
velocities e; - Independently for each '"trajec-
tory" r=ax+c;l :

ﬁ:(w + c; At L+ At) == fi(x,t)



Lattice- Boltzmann \1/

algorithm: / 1\
-macroparameters \‘% Sesse

iiiiiiiiiii

2. New density p(x,t + At) =3 fi(z, t + At),

velocity v(z,t) = (p(%tﬁrm)) Zc?;fi(a:, t + At) ,
1



Lattice- Boltzmann N/
algorithm: / 1\ _______

-relaxation S EE R

...........

3.Relaxation and possibly applying forcing terms
g; - Independently Iin each node z:

fix,t + At) == fi(x, t + At)+

L+ B0 = Jilet+ A1)+,

4. Back to step 1.



Boundary conditions




Boundary conditions for flow

1) Bounce back boundary conditions imply

zero (non-slip) velocity for flow and
zero total flux for diffusion.

2) Fixed pressure (for flow) or density (for
diffusion)

3) Slip boundary conditions for flow: friction
depending on tangential velocity

4) Zero normal flux of solute particles (no
absorption)

5) Robin boundary conditions: normal flux is
a function of the concentration on the
wall (interaction with the structure)

6) Mirror and periodic boundary conditions.




Neumann (zero normal flux) boundary
conditions for diffusion

We wish to have a boundary condition of the
type
n-u=>0

u=—DVp+ pv

i.e. zero flux across the boundary.

We need to assign values for the distribution
function for the incoming velocities that
intersect the boundary.

We assign an equilibrium distribution at the
solid nodes:

filzj,t) = fi%p(xj,t), u(z),t))




Neumann (zero normal flux) boundary
conditions for diffusion

The unknown density and flux are
computed using a mirror point

ZEJ — Iy -+ Qanj

using a mirror rule for the flux

p(z;) = p(z;)
u(z;) = u(z;) = u(z;) — 2(u(;) - nj)n;
Values are interpolated to the mirror
point from neighboring grid nodes.

Normals n; and distances q; are averages
from intersection points.



Example: flow through a gel structure




Figure 1. Cluster Configuration
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Parallel computations
by domain decomposition

Domain Decomposition - sub-domains & boundary values
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cub-domain at interior
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Diffusion LBE. Diffusive scaling limit. (Hard calculations!)

f('n_‘_laj_’_cac)_f(naja C) — %[feq — f] (n:ja C)

(n,j,c) correspond to (t.n_(e),xj(e), C) = (62%, € 7. c)

To make notations shorter we skip indexes after the discrete velocities C of particles
and indexes after f for distribution functions and write f(c) instead.
Diffusive scaling means that we choose time scale:

At = €2 = Ax?

The differential equation corresponding to the diffusive scaling is

Ponf+ee V=" [f0~ ]

To model diffusion we introduce the equilibrium function as: ¢4 = w(c) [p]
X0
We introduce the asymptotic expansion f = > emf(m) to see the
m=0
connection between the Lattice Boltzmann equation and the diffusion equation for
small AX = € and will compute corresponding diffusion coefficient.



Diffusion LBE: continuum case.

Moments of f(m) are projections of f(m) on powers of

discrete velocities c:

p(m) — <f(m):1> :Zf(m)(c)
u,gm) = < > Zf c)c,Z

We put the expansion  f = Z gmf(m) into the equation

m=0

: 1
e’Of +ec-Vf= ;[feq — f]
and collect terms of the same order, that gives equations for f(m) :

81:][‘(!‘8) _I_ C - Vf(k—l—l) — 7]: {feq(k—l—2) L f(k?—|—2)}



Diffusion LBE: continuum case.

aff(k) 1c. Vf(k+1) _ -feq(k—b—Q) . f(k+2)}

N (==

:w(c)p(k+2) _ f(k—O—Q)}

This I1s an equation with respect to f(k+2) with right
hand side dependent on lower terms in the expansion for

f or in the abstract form:

To have this equation solvable we must have the right
hand side be orthogonal to the kernel of the operator L

consisting of constants. It implies:

th(k) + vkt — g



Diffusion LBE: continuum case.

m=0: We observe that f(9) = w(c)p(t,x).

m=1: The equation for f(l) IS:
. w(ec)pH) — )]

c-vr0 ==
-
Myltiplying scalraly the last equation by c, we get, writing

w(c) =w:

ugl) = —T (chg) v, pl0)
{w(c)p(l) _ f(l)} — Tc- Vf(o)

2 2
ci = (Zw c;| )
C

weiptt) — fz-(l)cfa

0

~



First order terms in the expansion

We solve the equation for f(l) by projecting

Pr f = f—(1, f) on the subspace of functions orthogonal

to constants in the discrete velocity space.
Pr /D) = —7pr (c : Vf(o))
= (o (e 9 (1 e 7))

We arrive also to p(l) = 0, <1,w(C-Vp(O))> =0
because ¢ - V£(9) is odd and w(c) is even with respect
to the velocity variable and f(l) must be odd with respect

to the velocity variable.

T herefore f(l) = Pr f(l) — —T W (c : Vp(o)) and p(l) = 0.



Diffusion equation as a compatibility
condition of second order

m=2: Equations In the next order look as

f O + ¢ VW = 2 [u(e)p®@ - ;@)
T
with compatibility condition: <1, 0rf0) + ¢ Vf(1)> = 0
It implies that Pr f@) = 7 pr (E)tf(o) +c- Vf(l))

and that the compatibility condition is the diffusion equa-
tion for p(o):

C



Diffusion LBE: discrete case

1. ..
f('?l—l_lﬂj—'_c'-‘ C)_f(n':jﬁ C) — ; [ftq _ f] (n':j: C)'

0
We introduce the asymptotic expansion f = > ™ f(m)

m=0
The difference operator in the left hand side can be ex-

pressed by means of the Taylor expansion:

Pt + €, + ec,c) — [V (tn, x;, ¢) =
e(c- V) fUm) 4 € (c‘% + %(c - V)Q) £l

1
+3(c- V) (815 + g(c : V)2> Fim 4



Diffusive limit. Discrete case (similar)
m=0: We observe that (%) = w(c)p(t, x).
m=1: The equation for f(1) is: ¢ - Vf(o) = {w(c) (1) _ f(l)}

ugl) — T (Zw Ci|2) V?;p(o) _ —’TCEV@[)(O)

J S R—— (C . VP(O))
m=2 The equation in the next order looks as:
O f O te vl 4= (c v)2£(0) — - {w(c) ) — ]
with compatibility conditions: 9:p(®) + v . u(1) + %Zw ci|? ap® =0

?

a1p\9) + cg (% — ’T) Apl®) =0 -diffusion equation

°S

02 (% — »r) - diffusion coefficient



Example of diffusion

SRR

Diffusion through EC/HPC(30%) film




Example of flow

Flow through a sample of EC/HPC(30%) film




Diffusion and flow streamlines

Streamlines for diffusion Streamlines for flow

As a result of computations we get a velocity field 9, for flow, and a flux field

uw=—DVp+ pv

for diffusion and for advection — diffusion. Velocity here is zero in the pure diffusion
case. Streamlines are computed by integration of ODE along these vector fields and

show the average paths of fluid particles for the flow case and solvent particles in the
diffusion case.



Examples of multyphase flows.

Two phase flow and

Three phase flow
diffusion of the third phase



Multy-phase flows. Shan Chen model

_ , At
fi(x 4 vidt b+ At) = f7(x. 1) = — [f7(x.1) = £ (x )]
o
_ v,-ud  (v;-u%)? ucd’
ag.eq . : L o l o o
X, 1) = w;p, |1 _ | — —
]( 1 ( ) [ !0 a | (g | 2 c :;l 2 (‘g
_ F p,iug
u’? =u’ i oo 11" — ZU 7 is common velocity of phases

FD, — F;ﬂh -+ ngs -+ F‘; is the sum of forces acting between different phases

F;ﬂh is responsible for phase separation

ads : : :
F{T is responsible for adhesion forces



Interphase forces in the Shan Chen model

Fﬁr _— F;G’IE T ng“ T Fg is the sum of forces acting between different phases

For simple repulsion between different species the interactive force in a binary
mixture can be chosen as:

Fl(x,t) = —py(x,t)G" E wW;ips (X + v;At)v
where @ and & mark different phases. ?

Similarly the adhesion between fluid particles and the solid boundary can be chosen :

Fo%(x,t) = —pg(x,t) G2 E w;s;(x + v;At)v,
Where S; is 1 if the node i is inside the solid and zero otherwise.

To model a mixture of wetting and non-wetting fluid Gad‘? can be chosen

positive for wetting fluid and - G“dq ( negative with the same absolute value)
for non-wetting fluid.



Macroscopic equations corresponding to
the Shan Chen model of multyphase flows

Shan & Doolen (01’995)



The parameter G"defines missible or immissible character
of multiphase flows in the Shan Chen model. The thickness of
the interface increases with decreasing Gec°" and fluids mix
together below certain threshold.

The difference of pressure inside and outside of a bubble
satifies the Young — Laplace law : it is proportional to the
curvature of the bubble 1/R.

ads ads
GB o GA
Gcoh PA—PB

) solid phase

wetting fluid
>

cosf =

Huang et al. (2007) Figure 4.4: Sketch of contact angle 6.



