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[image: image1.png]~I'he Tundamentat prediction of the consltant growth rate population model,
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is that the population exponentially grows without limits (if R, > 0). Although
this model may accurately reflect experiments in the initial stages, we realize
that no population will grow exponentially indefinitely. A more complex
population growth model is needed. The growth rate cannot remain constant.
What might prevent a population from growing without a bound ? Essentially
we suspect that once a population grows sufficiently large it will begin to
interact in a different way with its environment or with other species. Labora-
tory experiments have shown that the lack of food (nutrients) to sustain an
indefinitely large population can limit the population growth. Even if the
food supply is sufficiently increased, experiments have indicated that the




[image: image2.png]growth rate still diminishes as the population density* increases. In some
manner, still being investigated by researchers, the increase in density causes
the birth rate to decrease, the death rate to increase, or both. At some popula-
tion, the birth rate equals the death rate and the resulting growth rate is zero.
Thus, crowding may have the same effect as limiting the food supply. Space
can be considered necessary to sustain life for certain species.

Let us attempt to mathematically model this process. In general, the
growth rate (I/N) dN/dt may not be constant, but might depend on the
population:

LaN_
N

aN _ NRN).

R | or | 9N
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What mathematical properties might the function R(N) have? We must
remember that we have already assumed that the population is large enough
so that we may model N(z) as a continuous function of time. Thus we are not





[image: image3.png]SO that we may model /¥(7) as a continuous function of time. I'hus we are not
particularly interested in R(N) for N extremely small. For moderate size
populations, growth occurs with only slight limitations from the species’
total environment; as N diminishes R(N) should approach the growth rate
without environmental influences. As the population increases, we still expect
it to grow, but at a smaller rate due to the limitation on growth caused by the
increased population density. Thus R(N) decreases as N increases. For a
much larger population, experiments show the growth rate to be negative
(more deaths than births). If we assume that the growth rate is continuous,
then we know there is a population at which the growth rate is zero as
sketched in Fig. 37-1:
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Figure 37-1 Possible density-dependent growth rates, R(N).




[image: image5.png]In particular, note that we have not attempted as yet to give a specific model
of the growth rate for extremely small populations. However, for simplicity
we now model the growth rate for very small populations in the same manner
(solid curve). We cannot expect this model to always make accurate predic-
tions if the population ever gets sufficiently small. The simplest function with
this property is the straight line,

R(N) = a — bN,

sketched in Fig. 37-2, yielding the nonlinear first order differential equation
known as the logistic equation,

N _ N@—bN [2))

a is the growth rate without environmental influences, and b represents the
effect of increased population density. Note that a and b are positive con-
stants. This model was first investigated by Verhulst in the late 1830s and
later “rediscovered” by Pearl and Reed in the 1920s.




[image: image6.png]Before solving this equation let us indicate a more specific model from
which it may arise. If growth was limited by the supply of food, then another
variable can be introduced equal to some measure of the yearly available
food, F,. Perhaps the growth rate is proportional to the difference between
the available food and the food necessary for a subsistence level of food
consumption, F,. Under these assumptions,

~ar = UF.—F).
Suppose that the available food per year F, is fixed. The subsistence level of
food consumption can be assumed to be proportional to the population,
F,= pN.
This again yields the logistic equation

AN _ NGF, — ap).



[image: image7.png]The population at which the growth rate is zero is an equilibrium popula-
tion in the sense that if the population was initially at that value it would
stay there. That is, the number of births would exactly offset the number of
deaths. Using the logistic model, equation 37.2, the equilibrium populations
are

N=0 and N=-§--

Zero population is certainly an equilibrium population. However, the major
interest is in the case in which N = a/b. This is the largest population which
the environment can sustain without loss, the so-called carrying capacity of
the environment. This theory predicts that the population N = a/b would
correspond to Z.P.G. (zero population growth). A question we will answer
in the next section is whether this equilibrium population is stable or un-
stable. That is, if there were more than the equilibrium number, then would
the population eventually decrease and approach this equilibrium figure? Also,
if there were initially less than this “crowded” population, then would the
population this time increase towards the equilibrium population?




[image: image8.png]39. Explicit Solution
of the Logistic Equation

Although the logistic equation,

N(a— bN), @o.1)

was qualitatively analyzed in the previous section, more precise quantitative
behavior may at times be desired. An explicit solution to the logistic equation
can be obtained since the equation is separable:

The method of partial fractions will be successful in integrating this equation.
Since

integration yields
Linn—Linja—bN| =1+,
a a
where the absolute values in the resulting logarithms can be very important!

The arbitrary constant c enables the initial value problem, N(0) = N,, to be
solved. Eliminating ¢ in that way yields

1 1 1 1
S InINI— - Inja — 6N =t + - In|No| — - In|a — bN, .

Since both N and N, must be positive,

a— bN,

a—bN

This equation gives ¢ as a function of N, not a desirable form. Multiplying by

a and exponentiating, yields
N

N,

t (39.2)
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[image: image9.png]a — bN and a — bN, have the same sign* and hence,
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This equation can be solved for N
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As an exercise (see exercise 39.2) show how this solution verifies the qualita-
tive results obtained from the phase plane. Specific logistic curves depend on
the three parameters a, b, and Ny. One example is sketched in Fig. 39-1:

Figure 39-1 Typical time-dependent logistic growth curve.

Laboratory experiments, for examples, on the growth of yeast in a culture
and on the growth of paramecium, have indicated good quantitative agree-

ment to logistic curves.




[image: image10.png]fish population y(t) satisfies the IVP
y=ay—cy’~H,  y©0) =y, (20 ©)

where we start the clock at f, = 0. If there is no harvesting (i.e., H = 0), then the ODE
in (5) is the logistic equation. Our new fish population model now becomes:

The Logistic Model for a Fish Population with Harvesting

Suppose that a, ¢, yg, and H are positive constants. Then the predicted total tonnage
of fish y(r) solves the IVP

y=ay—cy’—H,  y0)=y (©)

on some z-interval beginning at r = 0.

For constant-rate harvesting we show in Section 2.8 that there is a formula for the
solution of IVP (6), but it is not easy to derive. For general harvesting terms H(z, y)
there is no known formula for the solution of IVP (6). In the absence of a solution
formula, we need some facts in order to analyze the qualitative behavior of solutions
of our fish population model.
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Qualitative Behavior of Solution Curves
Let’s see what we can find out about the solution curves of the IVP

y=y-y/12-5/3,  y0) =y m

forz>0and y > 0. Although we don’t yet have a solution formula for this IVP, we can
still obtain a rough idea of what the solution curves of the ODE must look like. First
let’s factor the function f(y) =y— y?/12—5/3as f(y) = —(y—10)(y—2)/12 and
observe that £(10) =0and f(2) = 0. So the constant functions y = 10 and y = 2 are
equilibrium solutions. By the property cited above, IVP (7) has a unique solution for
each value of yy, and, as a consequence, no two distinct solution curves for the ODE
can touch.

The function /(y) is negative for any y < 2 or y > 10 and positive for any value
of y between 2 and 10, as the figure in the margin shows. Since y’ = f(y), solution
curves that originate above the equilibrium solution y = 10 (or below the equilibrium
solution y = 2) always fall (because f(y) < 0). Solution curves that originate between
y=2and y = 10 always rise (because f(y) > 0). The figure in the margin illustrates
this behavior.

Thus, we see that the equilibrium line y = 10 is trapped between converging solu-
tion curves with increasing time. This suggests that if the fish industry fishes at the rate
of 5/3 tons per year and the initial fish population y, is greater than 2, then eventually
there will be 10 tons of fish in the lake. If yq is less than 2, then the fish population
will eventually die out.




[image: image12.png]Attractors, Repellers, and the State Line




[image: image13.png]The Logistic ODE

In Section 1.3 we looked at the nonlinear ODE

dy/dt=ay—cy*—~ H



[image: image14.png]where a and ¢ are positive constants and /7 is a nonnegative constant. We used this
ODE to describe a harvested fish population. taking overcrowding into account. The
more common form of this ODE arises by putting @ = r and a/c = K to obtain the
harvested logistic equation

dyjdi=ry (1 = %) —H @

The constant r is the intrinsic growth constant and measures the difference between
the birth and death rates per unit time if there is no overcrowding and harvesting.
For example, r = 0.05 corresponds to a net growth rate of 5% per unit time. The
positive constant K (measured in units of population) is the saturation level or carrying
capacity in the case of no harvesting (H = 0). Let’s derive a solution formula for the
logistic ODE (4), first handling the case of no harvesting. As we will see, if y(0) > 0
and H = 0, then every solution y(¢) approaches K as t — +o00.




[image: image15.png]Solve the Logistic ODE (No Harvesting)
Let’s write the logistic equation in the differential form

dy—ry(l1—y/K)dt=0 ®)
This ODE is separable. Assume that y is neither O nor K to avoid division by 0, and
separate the variables after multiplying through by K:

K
mdyfrdt=0 (6)

We need an antiderivative G(y) of the function K/[y(K — y)] and the antiderivative
F(t) = —rt of the constant —r. To find G(y), notice that

K el a 1
V(K= RS
Integrate to obtain the desired antiderivative G:
G(y)=In|y]—In|K —y|
‘We have the general solution of ODE (5):

Inly| =In|K —y|—rt=¢, or

where ¢ is any constant. Exponentiate to obtain

Yy
K-y
If we allow C to be either positive or negative, then we can drop the absolute value
sign in (7). Now let’s solve y/(K — y) = Ce" for y

=Ce", where C=¢° [©)

y=(K—y)Ce"
y(1+Ce'"y = KCe"
KCe"
y 3)

“T+cCer



[image: image16.png]A Harvested Logistic Population
The IVP
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models a population that is harvested at a rate of 5/3 units of population per unit of
time (e.g., 5/3 tons of fish per year). Write the ODE in differential form, separate the
variables, and use partial fractions to obtain

1
dy+ ﬁ(y—z)(y— 10)dt =0

1 1
———dy+ —dt=0
v-20-1007 712

LN TS
gly—2"y—10]“ T 29"
Antidifferentiation gives
1 1
§[71n|)~2\+1n|y—10|]+Et=c
which simplifies to
y—10 2
In|——|=8c— =
"’y—z‘ -
Upon exponentiating, we get
y=10| _
y=2|"

If we allow the constant C to be either positive or negative, then we can drop the
absolute value sign. Solving

Ce™B,  where C = %

y—10 —2t/3
=C
y=2 ¢
for y, we have
10 —2Ce~2/3
Y= T1—ce=n &
Using the initial condition, y(0) = yo, we see (after some algebra) that
yo—10
C=
e (12)

Formulas (11) and (12) give the solution of IVP (10) for y, > 0, yo # 2, 10.





Model example. Population dynamics. Logistic equaiton
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FIGURE 2.8.3 Overcrowding, no harvesting: equi- FIGURE 2.8.4 Overcrowding, harvesting: equilib-
librium solutions y = 0, 12 (Example 2.8.4). rium solutions y = 2, 10 (Example 2.8.5).



[image: image18.png]Logistic Population Change (No Harvesting)

Suppose that the rate coefficient r is 1 (corresponding to a 100% growth in the popu-
lation per unit time) and the carrying capacity K is 12. From formula (9). the solution
formula for the IVP y' = y(1 — y/12), y(0) = Yo >0.is

12yo
Yo+ (12— yp)e~
Since ¢ — 0 as 1 — +oo, we sce that y(1) — 12y0/yo = 12, so the population
tends to the carrying capacity K = 12, which agrees with our sign analysis prediction.
Figure 2.8.3 shows some of the solution curves. Take a look at the state line with its
attracting and repelling equilibrium points.

Y=
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[image: image20.png]Figure 2.8.4 shows some solution curves. If y, > 2, then every solution tends to
the equilibrium solution y = 10 as t — 400 because ¢ /3 — 0 and the denominator
in formula (11) is never zero. Harvesting changed the equilibrium solutions and nar-
rowed the band between the attracting and the repelling equilibrium population levels
(compare with Figure 2.8.3). We see that the harvested population is robust enough
to recover from small disturbances as long as the initial population y, exceeds 2. If
Yo > 2, the fishermen can continue to harvest 5/3 tons per year from the lake. So
5/3 tons per year is a sustainable yield.




[image: image21.png]Bifurcations: A Harvested Logistic Model




[image: image22.png]As we change the value of ¢, the equilibrium solutions of ODE (1) change. At crit-
ical c-values, an equilibrium solution may split into two or more equilibrium solutions
(i.e., bifurcate), merge with another, or even disappear entirely. After a bifurcation
occurs, the long-term behavior of nonequilibrium solutions may be drastically altered.



[image: image23.png]Saddle-Node Bifurcation: Harvesting/Restocking a Population

Ocean fishing is now under intense scrutiny because it is believed that over-fishing
has brought stocks of several species of food fish such as cod (in the Atlantic) and
salmon (in the Pacific) to dangerously low levels. How can we remedy this situation?
Three strategies are currently being tested: lower the allowable limit of fish caught
(fishermen don’t like this at all), restrict fishing to a fixed scason each year (acceptable
to most fishermen, but with considerable grumbling), or develop ways to restock the
fish population (fishermen prefer this approach). The decline of the fish populations is
not just because of over-fishing; the pollution of streams, rivers, and the ocean itself
is also a major factor. The bifurcation model outlined below is one starting point for
thinking about the long-term effects of various harvesting and restocking policies.

A simple model for a logistically changing population undergoing constant-rate
harvesting or restocking is

P’:r(l—g)P+Q. P(O) = P, @

where P(z) is the population at time £ and r > 0, K > 0, Py > 0, and Q are constants.
The population is being harvested if Q is negative, restocked if Q is positive. What
happens to the population levels if the harvesting/restocking rate Q is changed? Are
there critical values of Q at which the long-term population levels undergo a dramatic
change? We answer these questions for the case 7 = 1, K = 1. Later in the section, we
show that we can always transform the general model IVP (2) to this case. Renaming
Pas yand Q as ¢, we consider the IVP

Y=>U-yy+e, ¥(0) = yo 3)

Let’s do a bifurcation analysis for the problem modeled by TVP (3). First, let’s see
how the equilibrium populations depend on the harvesting parameter c.




[image: image24.png]Bifurcation Analysis: Part 1

The zeros of the rate function in IVP (3) are the equilibrium populations. Use the
quadratic formula to show that the rate function f = (1 — Ny+e=—|y*—y—c]
has zeros y;, y, given by

y1=05-051+40)"% 3 =05+0.5(1+4c)"> @
See Figure 2.9.1 for a plot of f(y, c) for various values of ¢. Using formulas (4),
e There are no real equilibria if ¢ < —0.25. (The equilibria are complex numbers.)

e A single equilibrium (y = 0.5) appears for ¢ = —0.25.
e There are two equilibria (both real) if ¢ > —0.25.

So the bifurcation event occurs as ¢ increases through the value —0.25. This completes
the first part of our bifurcation analysis, which is an analysis of the zeros of f.
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[image: image26.png]FIGURE 2.9.1 Saddle-node bifurcation: plots of FIGURE 2.9.2 Saddle-node bifurcation: after the
f(, ¢), five values of ¢: bifurcation at ¢ = —0.25. bifurcation; ¢ = —0.16, light harvesting with equi-
libria at y; = 0.2 and y, = 0.8.




[image: image27.png]The sudden appearance of an equilibrium point and its splitting into two as the
parameter c¢ crosses a critical value is an example of a saddle-node bifurcation. 1t is
one of a class oftangent bifurcations. They are called that because at the value of ¢
where the bifurcation occurs, the graph of f(y) in the yf-plane is tangent to the y-axis
(see, e.g., the inverted parabola corresponding to ¢ = —0.25 in Figure 2.9.1).

Now let’s see how the population curves behave as we slide the parameter ¢
through —0.25 upward to the value 0.



[image: image28.png]Bifurcation Analysis: Part 2

Figure 2.9.1 gives a plot of the rate function f(y) = (1 — y)y- ¢ against y for various
values of ¢. From this plot, we can read off the properties of the solution curves of
¥ = (1 — y)y+ c as ¢ changes. Extinction always occurs if the harvesting rate ¢ is
less than —0.25. The rate function in this case is always negative. At ¢ = —0.25,
there is a single value y = 0.5 for which f(y) = 0, and hence ODE (3) has a single
equilibrium line y = 0.5. Solution curves above this equilibrium line fall toward it
and those below fall away and hit the extinction line y = 0. The rate function is still
negative for all y # 0.5. So ¢ = —0.25 is a risky scenario for the population because a
disturbance could force the population below the equilibrium level and then extinction
is inevitable.

Let’s set the harvesting rate ¢ at —0.16 (a value above the bifurcation level of
¢ = —0.25). ODE (3) now has two equilibrium lines y, = 0.2 and y, = 0.8, since the
rate function (1 — y)y —0.16 factors to —(y — 0.2) (y — 0.8). Population curves above
y1 = 0.2 approach the saturation equilibrium level y, = 0.8. Curves below y; = 0.2
fall away and eventually the population becomes extinct; that is, y(¢*) = 0 at some time
* that depends on the value of y, 0 < yo < 0.2. The solution curves in Figure 2.9.2
illustrate the varieties of solution behavior in this case. The lowest four of the solution
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FIGURE 2.9.3 Saddle-node bifurcation: after the  FIGURE 2.9.4 Saddle-node bifurcation diagram:
bifurcation; ¢ = 0, all solution curves inside the pop- state lines and the diagram for y’ = (1 — y)y+ c.
ulation quadrant approach the saturation level y = 1.





[image: image30.png]curves in the figure are curves of extinction. Solution behavior is encoded in the state
line to the right of Figure 2.9.2. The point y, = 0.2 is a repeller on the state line and
¥y, = 0.8 is an attractor.

If ¢ = 0, there isn’t any harvesting or restocking, and the equilibrium lines of
ODE (3) are y, =0 and y, = 1. Figure 2.9.3 shows these equilibrium lines and other
solution curves. The upper line attracts nearby solution curves, but the lower line
repels. The solution curves in Figure 2.9.3 below the line y = 0 have no physical
meaning. The state line to the left of the figure encapsulates the solution behavior for
¢=0; y; =0isarepellerand y, = 1 is an attractor. In this model, with no harvesting
or restocking, any positive population will, over time, approach the carrying capacity
of the ecosystem.



[image: image31.png]Bifurcation Analysis: Part 3

Let’s summarize what we’ve learned so far in a bifurcation diagram (Figure 2.9.4).
We graph the curves representing the location of the equilibrium points as ¢ varies:

(dashed) y,(c) = 0.5 — (0.5)(1 +4c)'/?,  (solid) y,(c) = 0.5+ (0.5)(1 4 4c)'/2

In this diagram we follow the convention that solid arcs denote attractors and dashed
arcs denote repellers. Each point (¢, y,(¢)) on the solid arc attracts all points on the
state line that are above the repelling point ((c, y;(c)). The greater the vertical sepa-
ration between the solid and the dashed arcs, the larger the region of attraction of the
point (c, y2(c)). The five vertical state lines shown in Figure 2.9.4 correspond to five
different values of c.

This bifurcation diagram tells the story of bifurcation, harvesting, and logistic
change. At the left of the diagram we see disaster for the population and, in the long




[image: image32.png]run, for the harvester, but in the middle of the diagram we see good times for the
population and harvester, provided the initial population is high enough. What’s the
story at the far right where the value of ¢ is positive?

This completes the bifurcation analysis of the IVP

Y=0=yy+tc,  y0)=yo 5)
Now let’s return to the original population IVP
P
P:r(l—})P+ 0, PO)= P 6)

and show how we can transform it to the IVP (5) we used for the bifurcation analysis.




[image: image33.png]Scaling Population and Time

Let’s transform IVP (6) to IVP (5) by scaling the time and population variables.
Suppose that
P=ay and t=bs

where a and b are positive scaling constants that we will choose strategically, and y
and s are the new scaled population and time variables. Note that d P/dy = a and
ds/dt = 1/b. Inserting these changes into IVP (6) and using the Chain Rule, we have
dP dPdyds a dy
dt ~ dydsdt  bds

Multiply the ODE in (7) by b/a and the initial condition by 1/a to get

=r(I-2)w+e  PO=R=a© @

dy - a b _ B
=r(1-)y+ie. YO = ®
‘We can simplify IVP (8) for the scaled population y by setting
1 b Q kR R
=K, b=-—, =20==, L0 O
g r ¢ a ¢ rkK 2 a K ©
to obtain the transformed IVP
dy
d—i =0=yy+ec.  y0)=y 10

with just the two parameters ¢ and yo, and not the four parameters r, K, Q, and P,
of IVP (2). The parameter ¢ plays the role of the harvesting/restocking term in the
rescaled system.

Rescaling the variables has another very interesting feature: the scaled population
and time variables are dimensionless. Here’s why: suppose, for example, that the
original variables P and r have the dimensions tons and years, respectively. Then

P tons
K~ tons

P
dim y = dim — = dim
a
years
years

T i % = dim tr = (dim ) (dim r) =




[image: image34.png]so y and s are dimensionless. Similarly, the parameters ¢ and Yo are dimensionless.
That means that any qualitative conclusions we reach about solutions of TVP (10)
remain valid no matter what units are selected to measure population levels and time.
The process of scaling variables to remove dimensions is nondimensionalization.

Finally, we see from the third equality in (9) that the bifurcation point ¢ = —0.25
corresponds to the value Q = —rK /4, which defines the critical harvesting rate to
be —rK /4 tons/yr. The analysis that we have done has profound implications for the
harvested species. It implies that if the harvesting rate is supercritical (i.c., if Q, which
is negative in this situation, is less than —rK/4), then the species is doomed. But if
the harvesting rate is subcritical (so Q > —rK /4), then the species has a chance of
survival and the sustainable yield for the harvester is r K /4 tons/yr.




[image: image35.png]Tangent Bifurcations: The Pitchfork

There are other kinds of tangent bifurcations that occur in natural processes, and the
pitchfork bifurcation is one of them.
Here’s an example of a pitchfork bifurcation. The nonlinear autonomous ODE

¥=(c—y)y an

contains a parameter c. Let’s carry out the three-part bifurcation analysis of ODE (11)
as ¢ varies.

Part 1. The equilibrium solutions of ODE (11) are given by
»=0, y,=c"? and y3=—c'"”? (12)

For negative values of ¢ the only visible equilibrium is ¥1, while y; and y; are complex-
valued. For ¢ = 0, ODE (12) has only one equilibrium solution: y=0. As the value of
c increases through 0, the equilibrium y = 0 bifurcates into three real-valued equilibria:
Y15 Y2, y3, where y3 < y; =0 < y,. Figure 2.9.5 shows graphs of the rate function
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FIGURE 2.9.5 Pitchfork bifurcation: the graphs of FIGURE 2.9.6 Pitchfork bifurcation: ¢ — —1, be-
f(. ¢) for four c-values with bifurcation at ¢ = 0. fore the bifurcation there is one real equilibrium.
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[image: image38.png]f(y,¢)=(c—yHyforc=—1,0, 1, 2. For each positive value of ¢ the graph of f
cuts the y-axis at the three points y, =0, y, = ¢'/2, and y; = —c!/2. At the bifurcation
value ¢ = 0, the graph of f is tangent to the y-axis at y, = 0, so this is another tangent
bifurcation.

Part 2. Figure 2.9.6 shows equilibrium lines and other solution curves for ¢ = —1
(before the bifurcation), and Figure 2.9.7 shows equilibrium lines and other solution
curves for ¢ = 2 (beyond the bifurcation). The equilibrium y = 0 is an attractor before
the bifurcation, but it is a repeller after the bifurcation, having transferred its attracting
character to the two new outlying equilibria y = y,, y;. The state lines alongside
Figures 2.9.6 and 2.9.7 display the attracting and repelling behavior of the equilibrium
points.

Part 3. Figure 2.9.8 is the pitchfork bifurcation diagram for ODE (11). It shows the
equilibrium values as functions of the bifurcation parameter ¢. The solid arcs corre-
spond to attracting equilibrium solutions, and the dashed line corresponds to repelling
equilibrium solutions. For example, a point P on the lower parabolic arc attracts all
points on a vertical line through P but below the dashed line y, = 0. We can see in
Figure 2.9.8 the reason for the name “pitchfork bifurcation.” We leave it to the reader
to draw some vertical state lines in Figure 2.9.8.

It is no coincidence that at the c-value where bifurcation occurs, the graph of
f(y,¢) in the yf-plane is tangent to the y-axis. This is true for both the saddle-node
and the pitchfork bifurcations. That kind of tangent behavior is usually the clue that a
bifurcation of some kind has occurred.




[image: image39.png]1.1 Preliminary ideas
L.1.1 Existence and uniqueness

Definition 1.1.1. Let X(z, x) be a real valued function of the real
variables t and x, with domain D < R2. A function x(t), with t in some
interval I < R, which satisfies

dx
x(t) = Tl X (6, x(@) (1.1
is said to be a solution of the differential equation (1.1).

A necessary condition for x(r) to be a solution is that (t, x(t)) € D for
each teI; so that D limits the domain and range of x(z). If x(t), with
domain 1, is a solution to (1.1) then so is its restriction to any interval
J © I.To prevent any confusion, we will always take [ to be the largest
interval for which x(z) satisfies (1.1). Solutions with this property are
called maximal solutions. Thus, unless otherwise stated, we will use
the word ‘solution’ to mean ‘maximal solution’. Consider the
following examples of (1.1) and their solutions; we give

X = X(t,x), D, x(t), 1




[image: image40.png]Proposition 1.1.1. If X is continuous in an open domain, D' < D,
then given any pair (to, xo)€ I, there exists a solution x(t), t€ I, of
X% = X(1, x) such that tyel and x(to) = X,.
For example, consider
% =2|x|'7, 2

where D = R2. Any pair (to, Xo) With x, 3 0 is given by (to, x(t,))
when x(t) is the solution

0= 0, te(—w,C)
D= -0r tec, )

and C = ty — \/x,. A solution can similarly be found for pairs (to, xo)
when x4 < 0.

Observe that Proposition 1.1.1 does not exclude the possibility that
x(to) = xo for more than one solution x(t). For example, for (1.2)
infinitely many solutions x(t) satisfy x(t,) = 0; namely every solution
of the form (1.3) for which C > t, and the solution x(f) = 0.

L3)




[image: image41.png]‘I'he lollowing proposition gives a sufficient condition for each pair
in D’ to occur in one and only one solution of (1.1).

Proposition 1.1.2. If X and §X/dx are continuous in an open
domain D’ < D, then given any (to, Xo)€ D’ there exists a unique
solution x(z) of x = X(t, x) such that x(t,) = x,.



[image: image42.png]Notice that, while X = 2|x|'/? is continuous on D (= R2) 8X/éx
(=]x|"" for x > 0and —|x|~ '/ for x < 0) is continuous only on
D' ={(t, x)|x # 0}; it is undefined for x = 0. We have already
observed that the pair (t,, 0), t, € R occurs in infinitely many solutions
of % = 2|x|"2.

On the other hand, X (t, x) = x —t and X /dx = | are continuous
throughout the domain D = R2. Any (t,, Xo) occurs in one and only
one solution of X = x —t; namely

x(t) =1+t +Ce' (1.4)

when C = (x, —to—1)e ",



[image: image43.png]A solution x(t) of X = X(r, x) is represented geometrically by the
graph of x(1). This graph defines a solution curve in the t, x-plane.

If X is continuous in D, then Proposition 1.1.1 implies that the
solution curves fill the region D of the t, x-plane. This follows because
each point in D must lie on at least one solution curve. The solutions
of the differential equation are, therefore, represented by a family of
solution curves in D (see Figs. 1.1-1.8).
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[image: image45.png]Fig. L7. x= J(1-x)|x|<1,



[image: image46.png]1.2 Autonomous equations

1.2.1 Solution curves and the phase portrait

A differential equation of the form
%= X(x), xeS =R, (D=RxS) (1.10)

is said to be autonomous, because % is determined by x alone and so the
solutions are, as it were, self-governing.

The solutions of autonomous equations have the following
important property. If £(r) is a selution of (1.10) with domain / and
range (1) then n(t) = £(t + C), for any real C, is also a solution with
the same range, but with domain {t|z+ C e I}. This follows because

(1) = &+ 0) = X(E+C) = X(n(0)). (1.11)

The solution curve x = () is obtained by transilating the solution
curve x = n(t) by the amount C in the positive t-direction.




[image: image47.png]For families of solution curves related Dy transiations i f, the
qualitative behaviour of the family of solutions is determined by that
of any individual member. The qualitative behaviour of sucha sample
curve is determined by X(x). When X (x) # 0, then the solution is
either increasing or decreasing; when X (c) = O there is a solution
x(t)=c.

This information can be represented on the x-line rather than the
t, x-plane. If X (x) # O for x € (a, b) then the interval is labelled with an
arrow showing the sense in which x is changing. When X (¢) = 0, the
solution x(t) = c is represented by the point x = ¢. These solutions
are called fixed points of the equation because x remains at ¢ for all r.
This geometrical representation of the qualitative behaviour of
X = X (x)is called its phase portrait. Some examples of phase portraits
are shown, in relation to X, in Figs. 1.16-1.19. The corresponding
families of solution curves are given in Figs. 1.12-1.15.
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Fig 116, =xx=0isafixed point. Fig. 117. i=}x*~1x=+1 are
fixed points.




[image: image49.png]1.3 Autonomous systems in the plane

Consider the differential equation

X= =X (1.19)
where x = (x,, x,) is a vector in R2 This equation is equivalent to the
system of two coupled equations

f= X %), X = Xy(x,, ), (1.20)

where  X(x) = (X, (x,, x,), X5(xy, x,)), because % = (%,, X,). A
solution to (1.19) consists of a pair of functions (x,(¢), x,(1)), te] R,
which satisfy (1.20). In general, both x1() and x,(¢) involve an
arbitrary constant so that there is a two-parameter family of
solutions.

The qualitative behaviour of this family is determined by how Xy
and x, behave as t increases. Instead of simply indicating whether x is
increasing or decreasing on the phase line, we must indicate how x
behaves in the phase plane. The phase portrait is therefore a two-
dimensional figure and the qualitative behaviour is represented by a
family of curves, directed with increasing t, known as trajectories or
orbits.

To examine qualitative behaviour in the plane, we begin (as in
Section 1.2) by looking at any fixed points of (1.19). These are
solutions of the form x(t) = ¢ = (¢1, ¢;) which arise when

Xi(cy,e)=0 and X(cy,c5)=0. (1.21)
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[image: image51.png]Fig. 1.27. %, = —x),% = —x, +x;.




[image: image52.png]Fig. 139. Phase portrait for %, = 3x}°, %; = 1. There is no fixed point for this
system and trajectories touch the x,-axis.
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Fig. LI8.

% x = Oisafixed point. Fig. 1.19. X =x% x = Oisafixed point,

¢ c
— —
(a) (b)

c c
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©) (d)

Fig. 1.20.  The four possible phasc portraits associated with a single fixed point. The
fixed point is described as an attractor in (a), a shunt in (b) and (c) and a repellor in (d).




