CHAPTER 1

Introduction

1.1. Dimensional Analysis

Exact solutions are rare in many branches of fluid mechanics, solid mechanics,
motion, and physics because of nonlinearities, inhomogeneities, and general
boundary conditions. Hence, engineers, physicists, ahd applied mathematicians
are forced to determine approximate solutions of the problems they are facing.
These approximations may be purely numerical, purely analytical, or a combina-
tion of numerical and analytical techniques. In this book, we concentrate on the
purely analytical techniques, which, when combined with a numerical technique
such as a finite-difference or a finite-element technique, yield very powerful and
versatile techniques.

The key to solving modern problems is mathematical modeling. This process
involves keeping certain elements, neglecting some, and approximating yet
others. To accomplish this important step, one needs to decide the oxder..of
magnitude (i.e., smallness or largeness) of the different elements of the system
by comparing them with each other as well as with the basic elements of the
system. This process is called nondimensionalization or making the variables
dimensionless. Consequently, one should always introduce dimensionless
variables before attempting to make any approximations. For example, if an
element has a length of one centimeter, would this element be large or small?
One cannot answer this question without knowing the problem being con-
sidered. If the problem involves the motion of a satellite in an orbit around the
earth, then one centimeter is very very small. On the other hand, if the problem
involves intermolecular distances, then one centimeter is very very large. As a
second example, is one gram small or large? Again one gram is very very small
compared with the mass of a satellite but it is very very large compared with the
mass of an clectron. Therefore, expressing the equations in dimensionless forn
brings out the important dimensionless parameters that govern the behavior of
the system. Even if one is not interested in approximations, it is recommended
that one perform this important step before analyzing the system or presenting
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experimental data. Next, we give a few examples illustrating the process of
nondimensionalization.

XAMPLE |

We consider the motion of a particle of mass m restrained by a linear spring
having the constant £ and a viscous damper having the coefficient u, as shown in
Figure 1-1. Using Newton’s second law of motion, we have

m——-—+u—;—+ku=0 (1.1)

where u is the displacement of the particle and ¢ is time. Let us assume that the
particle was released from rest from the position ¥ so that the initial conditions
are

u(0) =u, %(0)= 0 (1.2)

In this case, u is the dependent variable and ¢ is the independent variable. They
need to be made dimensionless by using a characteristic distance and a character-
istic time of the system. The displacement u can be made dimensionless by using
the initial displacement u, as a characteristic distance, whereas the time ¢ can be
made dimensionless by using the inverse of the system’s natural frequency wq =

vV'k[m. Thus, we put

u
u*=—  *=w,t
Uo

where the asterisk denotes dimensionless quantities. Then,

du d(ugu*) dr* du*
— . g u PSS
dr  dr*  dr oMo g
d*u d*u*

= ;.42

dit Yoo g

so that (1.1) becomes
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Figure 1-1. A mass restrained by a spring and a viscous damper.
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d*u* du*
mw%uo dr =2 + gl ""i_t";' + kuou* =0
lence,
d*u* du* k
* + xX —
drsr " H e mw} u*=0
or
d*u* du*
T +[.1*‘d—t';+u*—0 (1.3)
where
x= & (1.4)
mwy
In terms of the above dimensionless quantities, (1.2) becomes
«0=1 ad “(©)=0 (1.5)
u = — =
dt*

Thus, the solution to the present problem depends only on the single param-
eter u*, which represents the ratio of the damping force to the inertia force or
the restoring force of the spring. If this ratio is small, then one can use the
dimensionless quantity u* as the small parameter in obtaining an approximate
solution of the problem, and we speak of a lightly damped system. We should
note that the system cannot be considered lightly damped just because u is
small; u* = u/mewe = pu/~/km must be small.

EXAMPLE 2
Let us assume that the spring force is a nonlinear function of « according to
Sipring = ku + kyu? (1.6)
where & and k, are constants. Then, (1.1) becomes
d*u du
mE?;-+p-Jt—+ku+k2u2=0 a.7n

Again, using the same dimensionless quantities as in the preceding example, we
have

d*u* du*
2 2, %2 —
Mo Wo e + puo wo dt* + kuou* + kyugu** =0

or
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d*u* du*

dr*? tut dt,,,+u*+eu*2 =0 (1.8)
where
M kaug
u* = and €= (19
mdwo k

The initial conditions transform as in (1.5). Thus, the present problem is a func-
tion of the two dimensionless parameters u* and €. As before, u* represents the
ratio of the damping force to the inertia force or the linear restoring force. The
parameter € represents the ratio of the nonlinear and linear restoring forces of
the spring.

When we speak of a weakly nonlinear system, we mean that k,uq/k is small.
Even if k, is small compared with k, the nonlinearity will not be small if u, is
large compared with kfk,. Thus, € is the parameter that characterizes the
nonlinearity.

EXAMPLE 3

As a third example, we consider the motion of a spaceship of mass m that is
moving in the gravitational field of two fixed mass-centers whose masses 71, and
m, are much much bigger than m. With respect to the Cartesian coordinate
system shown in Figure 1-2, the equations of motion are

d*x _ mm;Gx mm,yG(x - L)

m drr (2 + )2 - [(x - L)? +yz]3/2 (1.10)
d’y ___mm,Gy mm, Gy
m 'd_t—z-—— (xz +y2)3/2 - [(x . L)z +y2]3/2 (1.11)

where ¢ is the time, G is the gravitational constant, and L is the distance between
my and m,.

In this case, the dependent variables are x and y and the independent variable
is ¢. Clearly, a characteristic length of the problem is L, the distance between the
two mass centers. A characteristic time of the problem is not as obvious. Since

[
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Figure 1-2. A satellite in the gravitational ficld of two fixed mass centers.
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the motions of the masses m; and m, are assumed to be independent of that of
the spaceship, m,; and m, move about their center of mass in ellipses. The
period of oscillation is

20L3/?
T =
VG(my +m,)
so that the frequency of oscillation is
we =L73* \/G(m, + m,) (1.12)

Thus, we use the inverse of w, as a characteristic time. Then, we introduce di-
mensionless quantities defined by

X Yy
x*=z— y*=z t* = wet (1.13)
so that
dx d(x*L) dt* dx* d? 2dzx"‘
— s """':Lwo R _-i_= wWo 2
dt dr* dt dt* dt dr*
Aot b dy ) dy
dt  dr* dt ®dr* dr ° ar*?
Hence, (1.10) and (1.11) become
Loa d’x* mm,;GLx* ) mmyGL(x* - 1)
mLwgp dr*? [L?(x*? +y*z)]3/z [L2(x* - 1)? +L2y*2]3/2
L2 d’y* _ ) mm,GLy* mm,GLy*
mLwo e = [L2(x*? +y*2))%2 - [L2(x* - 1)? + LYy*2]3/2
or
d’x* _ mG x* _ myG x*-1) 114
dt*l L3w(2) x*Z +y*2)3/2 L3w% [(x* - 1)2 +y*2]3/2 ( . )
d’y*  mG y* _mG »* .
dt*I L3w% (x*l +y*2)3/2 L3w% [(x* _ 1)2 +y*2]3/2 ( 15)
Using (1.12), we have
mG o mGomy
Lwd my+my, L wd) m, +m,
Hence, if we put
my my
=¢ then ——=1-¢ (1.16)

ny +mz ml+m2
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and (1.14) and (1.15) become

d*x* (1-ée)x* e(x*-1)
d,-ﬂ - (xn "’}"2)3/2 - [(X* - ])2 +y¢2]3/2 (117)
diy* 1-¢€)y* *

y*  (Q-ey €y (1.18)

dt*? (x*? +y4.2)3/2 - [(x*- 1)? +y*z]3/2

Therefore, the problem depends only on the parameter €, which is usually
called the reduced mass. If m; represents the mass of the earth and m, the mass
of the moon, then

1
80 1
€~ =—
1 81
1+—
80

which is small and can be used as a perturbation parameter in determining an
approximate solution to the motion of a spacecraft in the gravitational field of
the earth and the moon.

EXAMPLE 4

As a fourth example, we consider the vibration of a clamped circular plate of
radius @ under the influence of a uniform radial load. If w is the transverse
displacement of the plate, then the linear vibrations of the plate are governed by

92w

DVw - PV*w- p —
w Viw ;r)at2

=0 (1.19)
where ¢ is the time, D is the plate rigidity, P is the uniform radial load, and p is
the plate density per unit area. The boundary conditions are

ow

w=0 —=0 atr=a
or

(1.20)
w < o0 atr=0

In this case, w is the dependent variable and ¢ and r are the independent
variables. Clearly, a is a characteristic length of the problem. The characteristic
time is assumed to be T and it is specified below. Then, we define dimension-
less variables according to

Hence,
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ow _d(aw*)dr* ow*
or or* dr oOr*
ow 0(aw*)  ow*

e

0 a0 a0
ow _d(aw*) dr* a dw*
ot ot* dt T or*

Since
_9* 1a 123
ort ror r*o6?

(1.19) becomes

D(a2+1a+1a22*P(az+1a+1a2)*
- — w¥* - — — w
a® \or** r*or* r*? 90? a \or** r*ar* r*? 962

pa d*w* _
T T? 3 =0
or
D pat 3*w*
;2—1; Vi w* - gr2yyx - FF Pyee =0 (1.21)

We can choose T to make the coefficient of 3?w*/dr*? equal to 1, that is,
T =a~/p/P. Then, (1.21) becomes

2w*
€T wE - VA% - az:; =0 (122)
where
D

In terms of dimensionless quantities, the boundary conditions (1.20) become

%*
w*:?..“:....zo at r*:l

or* (124)
w* < o0 at r*=0

Therefore, the problem depends on the single dimensionless parameter e. If the
radial load is large compared with D/z?, then € is small and can be used as a
perturbation parameter.
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EXAMPLE 5
As a final example, we consider steady incompressible flow past a flat plate.
The problem is governed by

ou ov
__+-...—-=0 1.25
ox oy ( )
du  du op 9%u azu) ‘
—tpyp—)=- —+u| —+—= 1.26
p (“ ax "ay) ax - (6x‘ ay? (1.26)
v dv op (azu a"‘v)
—+y—|=- —+u| —+— 1.27
P ( ox "ay) ay Mlax?  ay? (1.27)
u=v=0 at y=0

(1.28)

U>Uep,v>0 as x—>-o0

where # and v are the velocity components in the x and y directions, respec-
tively, p is the pressure, p is the density, and u is the coefficient of viscosity.

In this case, u, v, and p are the dependent variables and x and y are the inde-
pendent variables. To make the equations dimensionless, we use L as a charac-
teristic length, where L is the distance from the leading edge to a specified point
on the plate as shown in Figure 1-3, and use U. as a characteristic velocity. We
take pU2 as a characteristic pressure. Thus, we define dimensionless quantities
according to

p
pU2

u*= v* =

x*=

Y
* — x =i

B %

u L
U Uw
Then,
du_d(Usu*)dx* Undu* du_U.du* 3% U d'u?®
ox ox* dx L ox* 9y L day* ox? L? ox*?
o%u _Un 02u*
ayz L2 aym‘z

P
Ug !

>

e X A

Figure 1-3, Flow past a flat plate.
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v U dv* w_Usov* 3% U d’w* 0*v_ U d*v*
ox L 0x* ay L oy* ox® L? ox** oy* L? oy*?
% _pULop* ap_pUZ 0p*
ox L ox* o9y L ody*

Hence, (1.25) through (1.28) become

U au* Un ov*
L ox* L oyt (1.29)
pUZ: _du* pU2 _odu* pULdp* uU. [3*u* 3%u*
L “art L Uar L axrt L \axet Tape) (130
oU2% *av*+pU3° LU pU2 3p* uU. (3*v* 3%v*
L axr L wy* L ay*+ L? ax""'-..ay"‘2 (1.31)
u*=v*=0 at y*=0
1.32
Usott* > Ue,v*>0 asx*—>-oo ( )
Equations (1.29) through (1.32) can be rewritten as
ou* ov*
-a—Z—; 5;'7;=o (133)
2 2
u*a—u—t+u*a—u—t=—ig—t+-l— au*+au*) (1.34)
ax*  ay*  ax* R\&x** %
: 2 2
u*-a—v:+u*-ai-——9[—’—-+ 9 v*+a v*) (1.35)
ax* " gy*  ay* R\ax**  ay*?
u*=v*=0 at y*=0 (1.36)
u*>1 v*>0 as x*—>-oo (1.37)
where
UL
rR=E (1.38)
u

is called the Reynolds number.

Equations (1.33) through (1.37) show that the problem depends only on the
dimensionless parameter R. For the case of small viscosity, namely u small com-
pared with pU.L, R is large and its inverse can be used as a perturbation param-
eter to determine an approximate solution of the present problem. This process
leads to the widely used boundary-layer equations of fluid mechanics. When the
flow is slow, namely pU..L is small compared with u, R is small and it can be



