
C H A P T E R 7

Spatial Modeling

James P. Keener

All of the models considered in previous chapters have relied on the implicit assump-

tion that chemical concentrations are uniform in space. This assumption is reasonable

when the region of space in which the reaction takes place is confined and quite small.

However, there are many situations in which chemical concentrations are not uniform

in space. A well-known example in which nonuniform distributions are crucial is the

propagation of an action potential along the axon of a nerve fiber (Figure 1.1). When

a nerve cell “fires,” a wave of membrane depolarization is initiated at the base of the

axon (where it connects to the cell body; see Figure 2.1) and propagates along the axon

out to its terminus. During propagation, large spatial gradients in membrane poten-

tial and local currents are created. The interaction between these spatial gradients and

voltage-sensitive ion channels in the axonal membrane drives the wave along the axon.

In order to understand the propagation of a nerve impulse, we must first master the

basic principles of molecular diffusion and the interactions between chemical reaction

and diffusion.

Many other questions arise in molecular cell biology that demand at least an ele-

mentary understanding of molecular diffusion. For instance, how long does it take for

a chemical signal generated at the cell membrane to diffuse to the nucleus? Why are

expensive transport systems required to move some materials in cells, for example be-

tween a nerve cell body and synapses in axons and dendrites? How fast can molecules

or ions pass through protein channels in membranes?

In Chapter 4 and Chapter 5 we faced the problem of nonuniform Ca2+ concentra-

tion in the vicinity of Ca2+ channels. There we made a simplifying assumption that the

Ca2+ concentration is high in a small region adjacent to the channel (domain Ca2+). To
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Figure 7.1 Spatial phenomena in cell biology. (A) Waves of aggregation in fields of slime

mold amoebae. The light and dark bands correspond to regions where the amoebae are ac-

tively moving or not. The amoebae collect at the center of each pattern, where they form a

multicellular slug. The collective motion of the cells is organized by waves of cyclic AMP that

propagate throught the extracellular medium. Courtesy of Peter Newell. (B) Stripes of gene

expression (ftz and eve) in a fruit fly embryo at (left) 3 hr. after fertilization and (right) 3 1/2

hr. after fertilization. Reprinted from Lawrence (1992). For an introductory discussion of the

segmentation genes in Drosophila, see Alberts et al. (1994). (C) Pigmentation patterns on sea

shells. From Meinhardt (1998). (D) The cleavage furrow in a dividing cell. Reprinted from Al-

berts et al. (1994); original by Yoshio Fukui. A dividing slime mold amoeba is stained for actin

and myosin. The actomyosin ring in the center of the cell contracts like a purse-string to divide

the cell in half.

improve on the domain Ca2+ approximation and other simplified approaches to spatial

nonuniformity, we will need the spatial modeling principles described here.

A more sophisticated example of spatiotemporal organization in living cells is the

phenomenon of Ca2+ waves that propagate through eggs after fertilization. These waves

will be modeled in great detail in Chapter 8, after we have studied reaction–diffusion
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equations in this chapter. Similar to Ca2+ waves in eggs are waves of cyclic AMP that

propagate through fields of slime mold amoebae shown in Figure 7.1A. By directing the

motion of the amoebae, these chemical waves organize the complex behaviors of this

primitive multicellular organism: aggregation of simple amoebae into a multicellular

slug, motility of the slug, and formation of the fruiting body. Other interesting examples

of spatial organization include gap-gene expression in early fruit fly embryos (Figure

7.1B), seashell patterns (Figure 7.1C), and medial ring placement at cell division (Figure

7.1D). Although we will not attempt to model any of these phenomena in this book, a

starting point for such investigations is this chapter.

The chapter is organized along the following lines: First, we consider diffusion

in one dimension, such as we might find in a long thin tube like a nerve axon. We

distinguish between a conservation law (how the law of conservation of matter re-

lates molecular flux to local changes in concentration) and a constitutive relation

(how molecular flux is determined by concentration gradients, fluid transport, and

electrophoresis). These principles are expressed in the precise mathematical terms of

partial differential equations (PDEs). We show the exact solution to these equations for

a number of important illustrative cases. Because PDEs cannot be solved exactly in

most realistic situations, we next describe a numerical procedure, called the method

of lines, that is easily implemented. Also, because very few spatial nonuniformities are

effectively one-dimensional, we show how to formulate the conservation law and con-

stitutive relations in two and three dimensions. We then couple molecular diffusion

to nonlinear chemical reactions in order to study wave propagation in one spatial di-

mension. The theory is applied to the FitzHugh–Nagumo equations of nerve impulse

propagation introduced in Chapter 2.

7.1 One-Dimensional Formulation

7.1.1 Conservation in One Dimension

Many equations in biology are consequences of conservation laws. A conservation law is

simply a mathematical statement describing how some quantity is created or destroyed

or moves about.

Consider a chemical species C whose concentration c(x, t) varies in time and space,

where the spatial variation is restricted to one spatial variable x. This situation is illus-

trated in Figure 7.2, where the chemical species C is contained in a long, thin tube with

A

xa xb

dx

Jxa

f
Jxb

Figure 7.2 Conservation in one dimension.
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constant cross-sectional area A. In any fixed region R along the tube, the conservation

of C can be expressed in words as

time rate of change of the total amount of C within R H

rate at which C flows in to R

− rate at which C flows out of R

+ rate at which C is produced within R

− rate at which C is destroyed within R. (7.1)

The total amount of chemical C contained in a small slice of tube between x and

x + dx is c(x, t)A dx. At any time t, the total amount of C in some arbitrary interval

xa < x < xb can be computed by integrating c(x, t)A over that interval:

total amount of C in the interval [xa, xb] H

∫ xb

xa

c(x, t) A dx. (7.2)

It is important to distinguish between concentration (amount/ volume) and the “total

amount.” If c has units of micromolar (micromol/liter), then the total amount has units

of micromoles.

Now suppose that C is free to move about inside the tube, so that C moves in and

out of the interval by crossing the boundaries of the interval at x H xa and x H xb. If we

denote by J(x, t) the rate at which C moves across the boundary at position x from left

to right at time t, then the net movement, or flux, of C into the interval is

net rate of entry of C H AJ(xa, t)− AJ(xb, t). (7.3)

Since the net rate of entry has units of amount/time and A has units of area, the flux

rate J(x, t) has units of amount/area/time. It is also important to remember that J(x, t)

is positive when C moves to the right, and negative when C moves to the left.

The total amount of C in the interval can also change because of the production or

destruction of C within the interval. If we let f (x, t, c) denote the net rate of increase of

C (production − destruction) per unit volume at location x and time t, then the total

amount of C produced in the interval at time t is

net rate of production of C H

∫ xb

xa

f (x, t, c(x, t)) A dx. (7.4)

Note that the presence of c in the definition of f allows for the possibility that the rate

of production of C depends on c itself. Since the units of the net rate of production

of C are amount/time, the units of f must be amount/time/volume. When f is positive,

the region is a source (leading to an increase in the total amount of C), and when f is

negative, it is a sink. The function f is often called a source function.

The conservation law (7.1) can now be written in mathematical symbols as

d

dt

∫ b

a

c(x, t) dx H J(xa, t)− J(xb, t)+

∫ xb

xa

f (x, t, c(x, t)) dx, (7.5)
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where the constant A has been factored out. The flux terms can be replaced by

J(xb, t)− J(xa, t) H

∫ xb

xa

∂

∂x
J(x, t) dx, (7.6)

allowing all the terms in (7.5) to be written as integrals:

d

dt

∫ xb

xa

c(x, t) dx H

∫ xb

xa

∂

∂x
J(x, t) dx+

∫ xb

xa

f (x, t, c(x, t)) dx. (7.7)

If the function c(x, t) is smooth enough, then the differentiation and integration can be

interchanged, and (7.7) can be rewritten as
∫ xb

xa

[

∂

∂t
c(x, t) dx−

∂

∂x
J(x, t)− f (x, t, c(x, t))

]

dx H 0. (7.8)

Since the interval is arbitrary, the only way this equality can hold is if the integrand

is zero. Therefore, we replace (7.8) by the equivalent conservation law in differential

form:

∂c

∂t
−

∂J

∂x
H f (x, t, c). (7.9)

Notice that in this equation there are two independent variables (x and t), and that

the equation contains partial derivatives with respect to both of these. Such equations

are called partial differential equations. Since time is one of the independent variables,

and this equation describes the evolution of c(x, t) in time, (7.9) is called an evolution

equation because it describes how the concentration of C evolves (changes) as time

proceeds.

7.1.2 Fick’s Law of Diffusion

Equation (7.9) is underdetermined because it is a single equation relating two un-

knowns: the concentration c and the flux J. To resolve this problem, an additional

equation relating c and J is needed.

In contrast to the conservation law (7.9), which follows indubitably from the gen-

eral principle of material conservation, the relation between c and J must be determined

empirically and is not universally valid. To make this distinction, the secondary relation

between c and J is usually called a constitutive equation.

One such constitutive relation is called Fick’s law, and states that C moves from

regions of high concentration to regions of low concentration, at a rate proportional

to the concentration gradient. In mathematical symbols, this diffusive flux is

J(x, t) H −D
∂

∂x
c(x, t), (7.10)

where the proportionality constant D is called the diffusion constant. The negative sign

signifies that C moves spontaneously from regions of high concentrations to regions of

low concentrations. The value of D depends on the size of C, as well as properties of the
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Table 7.1 Molecular weight and diffusion coefficients of some biochemical substances in

dilute aqueous solution.

Substance Molecular Weight D/107cm2/s

glucose 192 660

insulin 5734 210

cytochrome c 13,370 11.4

myoglobin 16,900 11.3

β-lacroglobulin 37,100 7.5

serum albumin 68,500 6.1

hemoglobin 64,500 6.9

catalase 247,500 4.1

urease 482,700 3.46

fibrinogen 339,700 1.98

myosin 524,800 1.10

tobacco mosaic virus 40,590,000 0.46

medium in which it is diffusing. The constant D has units of length
2
/time. Diffusion

coefficients of some typical biochemicals are given in Table 7.1.

Using Fick’s law, (7.9) becomes the reaction–diffusion equation

∂c

∂t
−

∂

∂x

(

D
∂c

∂x

)

H f (x, t, c). (7.11)

In this equation, the term ∂
∂x

(

D ∂c
∂x

)

is the diffusion term, and f is the reaction term.

When f is zero, that is, when there are no sources or sinks, (7.11) becomes the diffusion

equation

∂c

∂t
H

∂

∂x

(

D
∂c

∂x

)

. (7.12)

7.1.3 Advection

Suppose that there is a uniform macroscopic flow of the solvent, with speed v along

the x-axis, which carries solutes along with it. Then, during a small time 1t, all of the

C between x H xa and x H xa − v1t will cross the point x H xa. The total amount of C

crossing xa during this time is found by multiplying the concentration c(x, t) by the fluid

volume Av1t. The corresponding flux is therefore (after dividing by 1t to get amount

per unit time)

J(x, t) H vc(x, t). (7.13)

This flux is called the advective flux. Note that whereas the diffusive flux was pro-

portional to the concentration gradient, the advective flux is proportional to the

concentration itself.
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If there is both diffusive flux and advective flux, then the total flux is the sum of the

two:

J(x, t) H vc(x, t)−D
∂

∂x
c(x, t). (7.14)

Using this constitutive relation, (7.9) becomes a reaction–advection–diffusion equation,

∂c

∂t
+

∂

∂x

(

vc−D
∂c

∂x

)

H f (x, t, c). (7.15)

7.1.4 Flux of Ions in a Field

If the substance C is an ion and there is an electrical potential gradient, then there will

also be a flux of C because of the influence of the potential on the ion. In this case the

flux of ions is given by the Nernst–Planck equation

J H −D

(

∂c

∂x
+

zF

RT
c
∂φ

∂x

)

, (7.16)

where φ is the electric potential, z is the number of positive charges on the ion (a

negative integer if the ion is negatively charged), F is Faraday’s constant, R is the

universal gas constant, and T is absolute temperature. Notice that according to this

equation, there is movement because of both the concentration gradient and the

potential gradient.

7.1.5 The Cable Equation

Suppose that our long one-dimensional tube is bounded by a membrane, as in a nerve

axon. In this case, we wish to keep track of the electrical potential across the mem-

brane, rather than some chemical species within the tube. Nonetheless, the rules of

conservation are the same, so the derivation of the governing equation is similar.

Suppose the total current along the interior of the axon is I, positive from left to

right, and the transmembrane current per unit membrane area is IT, positive outward.

Then, conservation of current implies that

I(xa, t)− I(xb, t) H

∫ xb

xa

SITdx, (7.17)

where S is the circumference of the tube. This conservation law can be expressed using

integrals as

−

∫ xb

xa

∂I

∂x
dx H

∫ xb

xa

SITdx, (7.18)

and since the interval is arbitrary, the integrands must be equal, so that

−
∂I

∂x
H SIT. (7.19)
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Recall from Chapter 1 that the total transmembrane current consists of two

components, a capacitive current and the ionic currents

−
∂I

∂x
H S

(

Cm
∂V

∂t
+ Iion

)

, (7.20)

where V is the transmembrane potential. Finally, the relationship between current and

potential is given by the constitutive relationship known as Ohm’s law (also called the

core conductor assumption),

I H −
A

Rc

∂φi

∂x
, (7.21)

where Rc is the cytoplasmic resistance (with units Ohms length), and φi is the

intracellular potential. With this constitutive relationship, our equation becomes

∂

∂x

(

A

Rc

∂φi

∂x

)

H S

(

Cm
∂V

∂t
+ Iion

)

. (7.22)

Finally, we close the model by assuming that the membrane is in a highly conductive

bath, so that the extracellular potential φe is a constant. Since V H φi − φe, we arrive at

the cable equation

∂

∂x

(

A

Rc

∂V

∂x

)

H S

(

Cm
∂V

∂t
+ Iion

)

. (7.23)

For a tube of uniform circular cross section and diameter d, A/s H d/4. Typical

parameter values for a variety of cells are shown in Table 7.2.

7.1.6 Boundary and Initial Conditions

In the study of ordinary differential equations, it is necessary to specify initial data

before one can find a solution trajectory. With partial differential equations, one must

specify both initial data and boundary data before a solution can be found. Roughly

Table 7.2 Typical cable parameter values for a variety of excitable cells. From Keener and

Sneyd (1998).

parameter d Rc Rm Cm λm

units 10−4 cm � cm 103 � cm2 µF/cm2 cm

squid giant axon 500 30 1 1 0.65

lobster giant axon 75 60 2 1 0.25

crab giant axon 30 90 7 1 0.24

earthworm giant axon 105 200 12 0.3 0.4

marine worm giant axon 560 57 1.2 0.75 0.54

mammalian cardiac cell 20 150 7 1.2 0.15

barnacle muscle fiber 400 30 .23 20 0.28
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speaking, there must be one condition for each degree of freedom. Thus, since reaction–

diffusion equations are of first order in time, there must be one initial condition for

each unknown function. Since they are of second order in space, there must be two

boundary conditions (conditions at some points in space) for each unknown function.

Initial conditions usually specify the values of the dependent variables at some

initial time (usually t H 0) at which the solution is known or specified by exper-

imental conditions. Boundary conditions reflect certain physical conditions of the

experiment. For example, if the concentration c is specified to be some function f (t)

at some boundary point, say x H xa, then the condition c(xa, t) H f (t) is applied, called

a Dirichlet boundary condition. If, on the other hand, the flux at a point is specified,

then the condition −D ∂c
∂x

(xa, t) H g(t), called a Neumann boundary condition, is ap-

plied. If the flux is related to the value of c at the boundary, then the Robin condition,

−D ∂c
∂x

(xa, t) H h(t)− αc(xa, t), is applied.

It is often convenient to assume that a domain is infinite, even though there is no

such thing as an infinitely long tube. Even with infinite domains, however, boundary

conditions must be specified as constraints on the behavior of the dependent variable

in the limit that x→±∞.

7.2 Important Examples with Analytic Solutions

7.2.1 Diffusion Through a Membrane

Consider a membrane separating two large regions of space that contain some chemical

C. The concentration on the left is c1, and the concentration on the right is c2 (Figure

7.3). There is a small pore in the membrane (a one-dimensional channel of length L)

through which the chemical C can freely pass. Suppose that the two regions of space

are so large that their concentrations are not changing, even if chemical is flowing from

one region to the other.

Let us assume that the transport of C across the membrane has been going on

for some time, so that the process is at steady state, i.e., the concentration c(x, t)

is independent of time ( ∂c
∂t
H 0). In this case, c(x) must satisfy the “boundary value

problem”

∂2c

∂x2
H 0, c(0) H c1, c(L) H c2. (7.24)

x = 0 x = L

Inside Outside

cell membrane

[C] = c
1

[C] = c
2

Figure 7.3 Simple diagram of a pore through a

membrane.
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The solution of this problem is quite easy to find, being

c(x) H c1

(

1−
x

L

)

+ c2
x

L
. (7.25)

Consequently, the steady flux through the channel is proportional to the concentration

difference across the membrane,

J H −Dcx H
D

L
(c1 − c2). (7.26)

7.2.2 Ion Flux Through a Channel

Suppose that the chemical moving through the channel is an ion, and that there is a

potential difference across the channel, with φ(0) H φ1 and φ(L) H φ2. We make the

simplifying approximation that the potential gradient through the channel is constant:

dφ

dx
H

1φ

L
H

V

L
, where V H φ1 − φ2. (7.27)

If the process is in steady state so that the ion flux everywhere in the channel is the

same constant, then, from (7.16),

J H −D

(

cx + αc
V

L

)

, (7.28)

where α H zF/RT. We solve this differential equation for c(x) subject to the boundary

condition that c(0) H c1 and find that

c(x) H c1e
−αV x

L −
JL

DαV

(

1− e−α1φx/L
)

. (7.29)

Now we can determine the flux J by requiring that c(L) H c2, so that

J H −
D

L
αV

(

c2 − c1e
−αV

1− e−αV

)

. (7.30)

This expression for flux can be converted to an ionic current Ic by multiplying by zF,

in which case we obtain

Ic H −
D

L
zFαV

(

c2 − c1e
−αV

1− e−αV

)

. (7.31)

This expression is the famous Goldman–Hodgkin–Katz current equation, and it has

the important property that Ic H 0 when

1V H
RT

zF
ln

c1

c2

, (7.32)

which is called the reversal potential or Nernst potential for the channel. The Nernst

potential is the transmembrane potential when the ion is at equilibrium across the

membrane for a given transmembrane concentration ratio c1/c2.
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7.2.3 Voltage Clamping

A typical experiment in electrophysiology is to hold fixed the transmembrane potential

at some place on the membrane. For example, with a long axon, one might clamp the

voltage at one end and determine the resulting voltage profile along the axon.

For a passive membrane (e.g., a dendritic membrane), the voltage profile should

satisfy (7.23) with Iion H V/Rm, where Rm is the passive membrane resistance (ohm ·
cm2). The steady–state voltage profile V(x) must satisfy

A

Rc

∂2V

∂2x
H

SV

Rm

, (7.33)

subject to the boundary conditions V(0) H Vfixed and ∂V

∂x
(L) H 0 if the far end is sealed.

The solution of this problem is

V(x) H Vfixed

e(L−x)/λm − e(x−L)λm

eL/λm − e−L/λm
, (7.34)

where λm H
√

ARm

SRc
is the length constant for the axon. For a long axon (L is many length

constants), this solution reduces to

V(x) H Vfixede
− x

λm , (7.35)

a simple exponential decay away from the voltage–clamped end. Some examples of

space constants for a variety of excitable tissues are included in Table 7.2.

7.2.4 Diffusion in a Long Dendrite

All of the above examples examined steady behavior, after initial transients have

decayed. However, reaction–diffusion equations also contain information about the

temporal evolution of the process to steady state.

Consider calcium diffusing in a long dendrite. Suppose caged calcium is photore-

leased from a small region around x H 0. If we denote by c(x, t) the concentration of

calcium along the length of the dendrite at each time t, then the model becomes

∂c

∂t
H D

∂2c

∂x2
, −∞ < x <∞, t > 0, (7.36)

c(x, 0) H C0δ(x), (7.37)

where C0 is the total amount of released calcium, and δ(x) is the Dirac delta function.

Because the dendrite is long, we view the domain as infinite. Since we do not expect

the concentration of calcium to become appreciable at x H ±∞ in any finite time, we

require limx→±∞ c(x, t) H 0.

It can be shown (Exercise 2) that the solution of this model is

c(x, t) H
C0√
4πDt

exp

(

−
x2

4Dt

)

, (7.38)
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Figure 7.4 Gaussian at 0.1, 1, and 10 s

which is illustrated in Figure 7.4. For each fixed t, this solution is a Gaussian function,

and over time, the function becomes wider and the maximal value (at x H 0) declines,

c(0, t) H
C0√
4πDt

. (7.39)

At any other point x 6H 0, the solution is biphasic, initially increasing to a maximum

value and then decreasing back to zero. The maximum is attained when Dt/x2 H 1
2
. This

time behavior is illustrated in Figure 7.5.

We can readily calculate that

〈x2〉 H
∫ ∞

−∞
x2c(x, t) dx H 2Dt, (7.40)

so that the “root mean square” (rms) distance moved in time t is
√

〈x2〉 H xrms H
√

2Dt. (7.41)

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

c

t

x = 0

x = 1

0.0

Figure 7.5 Plot of c(0, t ) and c(x 6H 0, t ) from

(7.38).
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7.2.5 Diffusion into a Capillary

Suppose that a long capillary (open at one end) filled with water is inserted into a

solution of known chemical concentration C0, and the chemical species diffuses into

the capillary through the open end. The concentration of the chemical species should

depend only on the distance down the tube and so is governed by the diffusion equation

∂c

∂t
H D

∂2c

∂x2
, 0 < x <∞, t > 0, (7.42)

where for convenience we assume that the capillary is infinitely long. Because the solute

bath in which the capillary sits is large, it is reasonable to assume that the chemical

concentration at the tip is fixed at C(0, t) H C0, and because the tube is initially filled

with pure water, C(x, 0) H 0.

The solution of this problem is given by

C(x, t) H 2C0

(

1−
1
√

2π

∫ z

−∞

exp

(

−
s2

2
ds

))

, z H
x

√
2Dt

. (7.43)

If the cross-sectional area of the capillary is A, then the total number of molecules

that enter the capillary in a fixed time T is

N H A

∫ ∞

0

C(x, T)dx H 2C0A

√

TD

π
. (7.44)

From this equation it is possible to determine the diffusion coefficient by solving (7.44)

for D, yielding

D H
πN2

4C2
0A

2T
. (7.45)

Segel, Chet, and Henis used this formula to estimate the diffusion coefficient for bac-

teria (Segel et al. 1977). With C0 at 7 × 107/ml, and times T = 2, 5, 10, 12.5, 15, and

20 minutes, they counted N of 1800, 3700, 4800, 5500, 6700, and 8000 bacteria in a

capillary of length 32 mm with 1 µl total capacity. In addition, with concentrations C0

of 2.5, 4.6, 5.0, and 12.0 ×107 bacteria per milliliter, counts of 1350, 2300, 3400, and

6200 were found at T H 10 minutes. Using (7.45) a value of D in the range of 0.1–0.3

cm2/hour was found.

A second useful piece of information is found from (7.43) by observing that

C(x, t)/C0 is constant on any curve for which z is constant. Thus, the curve t H x2/D

is a level curve for the concentration, and gives a measure of how fast the substance

is moving into the capillary. The time t H x2/D is called the diffusion time for the pro-

cess. To give some idea of the effectiveness of diffusion in various cellular contexts, in

Table 7.3 are shown typical diffusion times for a variety of cellular structures. Clearly,

diffusion is quite effective when distances are short, but totally inadequate for longer

distances, such as along a nerve axon. Obviously, biological systems must employ other

transport mechanisms in these situations in order to survive.
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Table 7.3 Estimates of diffusion times for cellular structures of typical dimensions, computed

from the relation t H x 2/D using D H 10−5cm2/s.

x t Example

10 nm 100 ns thickness of cell membrane

1µm 1 ms size of mitochondrion

10µm 100 ms radius of small mammalian cell

100µm 10s diameter of a large muscle fiber

250µm 60 s radius of squid giant axon

1 mm 16.7 min half-thickness of frog sartorius muscle

2 mm 1.1 h half-thickness of lens in the eye

5 mm 6.9 h radius of mature ovarian follicle

2 cm 2.6 d thickness of ventricular myocardium

1 m 31.7 yrs length of a nerve axon

7.3 Numerical Solution of the Diffusion Equation

In order to attack more complex situations of reaction and diffusion, it is usually nec-

essary to resort to numerical solutions of the partial differential equation. With the

advent of cheap powerful computers, this approach has become increasingly useful.

Here we describe the simplest numerical method to solve reaction–diffusion equations.

While other more sophisticated numerical methods are available, this method is ade-

quate for our purposes, and can be readily implemented using your favorite numerical

integrator.

Consider the problem of determining calcium concentration following the pho-

torelease of caged calcium in a sealed dendrite 40 microns long. We define the spatial

variable x to extend from 0 to 40 microns, and the starting time t H 0 to be the time at

which the caged calcium is released. The equations we wish to solve are

∂c

∂t
H D

∂2c

∂x2
, (7.46)

where

c(x, 0) H

{

C0 20 µm < x < 30 µm

0 elsewhere
(7.47)

(7.48)

and

cx(0, t) H cx(40, t) H 0, (7.49)

and where C0 is the concentration of calcium released. Because the dendrite is closed

to calcium flux at its ends, no-flux boundary conditions are specified at both ends. The

caged calcium is initially confined to the region between 20 and 30 microns.
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To solve this problem numerically, we subdivide the spatial domain (0 < x < 40)

into N equal intervals, with 1x H 40/N denoting the length of each interval. If the N+1

endpoints of these intervals are denoted by xn, where n H 0, 1, 2, . . . , N, then we define

an approximation to c(x, t) at these points by c(xn, t) H cn(t).

Recall from calculus that the definition of the partial derivative of c is

∂c(x, t)

∂x
H lim

1x→0

c(x+1x, t)− c(x, t)

1x
. (7.50)

It follows that if 1x is small, but not zero, we have an approximation to the partial

derivative:

∂c(x, t)

∂x
≈

c(x+1x, t)− c(x, t)

1x
. (7.51)

In a similar way an approximation to the second partial derivative is found with 1x

small, but not zero:

∂2c(x, t)

∂x2
≈

c(x+1x, t)− 2c(x, t)+ c(x−1x, t)

1x2
. (7.52)

Using this approximation at each spatial grid point x H xn, we derive a set of

ordinary differential equations

∂cn(t)

∂t
H

D

1x2
(cn+1(t)− 2cn(t)+ cn−1(t)). (7.53)

Notice that this approximation is valid only at interior grid points with n H 1, 2, . . . , N−

1, since for n H 0 or n H N equation (7.53) references points c−1 and cN+1 that are

outside the domain, and therefore are not known. However, if we invoke the no-flux

boundary conditions, and use the approximation (7.51), we learn that

c−1(t) H c0(t), cN+1(t) H cN(t). (7.54)

These we apply to (7.53) for n H 0 and n H N and obtain

∂c0(t)

∂t
H

D

1x2
(c1(t)− c0(t)) , (7.55)

and

∂cN(t)

∂t
H

D

1x2
(cN−1(t)− cN(t)) . (7.56)

The system of ordinary differential equations (7.53), (7.55), and (7.56) is a closed

system of N+1 equations in N+1 unknowns that can be simulated with any standard

differential equation solver. This conversion of a partial differential equation to a sys-

tem of ordinary differential equations using difference approximations for the spatial

derivatives is called the method of lines.

The initial conditions are found directly from the initial condition for the par-

tial differential equation, with one minor adjustment. Since cn(t) H c(xn, t), we set

cn(0) H c(xn, 0), wherever that is well-defined. However, the initial profile has a jump
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Figure 7.6 Numerical solution of equations

(7.46)–(7.49).

discontinuity at x H 20 and x H 30, so it is preferable to define the value of c at these

points to be the average of the limiting values from the left and right.

The solution of this problem is shown in Figure 7.6.

7.4 Multidimensional Problems

The multidimensional formulation of a reaction–diffusion equation is an easy gener-

alization from one dimension. The primary difference is that in multiple dimensions,

flux is a vector rather than a scalar. As a vector, flux indicates not only the rate, but also

the direction, of transport, and the derivation of the conservation law is an exercise in

multidimensional calculus.

7.4.1 Conservation Law in Multiple Dimensions

Consider a chemical species C whose concentration c(x, y, z, t) varies in both time and in

some three-dimensional region with volume V . The verbal expression of conservation

(7.1) remains valid. At any time t, the total amount of C in the volume can be computed

by integrating c(x, y, z, t) over the volume:

total amount of C H

∫
V

c(x, y, z, t) dV. (7.57)

Now suppose that C is free to move about randomly, so that C moves in and out of

the volume by passing through the volume’s surface S. The flux J(x, y, z, t) is a vector,

since C can move in any direction. If we denote by n(x, y, z) the outward unit normal

vector on S (see Figure 7.7), then the net flux of C into the region is given by

net rate of entry of C H −

∫
S

J(x, y, z, t) · n(x, y, z) dA, (7.58)
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S
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n

Figure 7.7 Schematic diagram of a multi–dimensional

region.

where dA is the surface integration element. Because n is the outward normal, J · n is

positive when the motion is from inside to outside, which accounts for the negative

sign in this equation. The rate of production of C in the volume can be written as

f (x, y, z, t, c), where as before, this rate is allowed to depend on c itself. Thus, the total

rate of production of C in the region is given by

net rate of production of C H

∫
V

f (x, y, z, t, c(x, y, z, t)) dV. (7.59)

The conservation equation can now be expressed mathematically as

d

dt

∫
V

c dV H −

∫
S

J · n dA+

∫
V

f dV. (7.60)

The surface integral can be replaced by a volume integral using the divergence theorem,

which yields the multidimensional integral form

d

dt

∫
V

c dV H −

∫
V

∇ · J dV +

∫
V

f dV, (7.61)

where ∇· is the divergence operator. As before, if the function c(x, y, z, t) is smooth

enough, and since the volume V is arbitrary, we can rewrite (7.8) in differential form:

∂c

∂t
+ ∇ · J H f. (7.62)

Note that there are four independent variables (x, y, z, and t) and that the equation

contains partial derivatives with respect to all four variables.

7.4.2 Fick’s Law in Multiple Dimensions

Fick’s law states that C moves from regions of high concentration to regions of low

concentration, at a rate proportional to the concentration gradient. Thus, in multiple

dimensions, Fick’s law takes the form

J(x, y, z, t) H −D∇c(x, y, z, t), (7.63)

where the diffusion constant D is the proportionality constant, and the negative sign

ensures that C moves down the concentration gradient. Even in multiple dimensions,

the units of D are length
2
/time.
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Using Fick’s law, (7.62) can be rewritten as a reaction–diffusion equation:

∂c

∂t
− ∇ · (D∇c) H f. (7.64)

7.4.3 Advection in Multiple Dimensions

Multidimensional advective flux has the same appearance as in the one-dimensional

case:

J(x, y, z, t) H vc(x, y, z, t). (7.65)

Notice, however, that the velocity v is a vector, so the flux vector points in the direction

of the velocity vector.

If the random and biased directional motions coexist, the total flux is the vector

sum of the diffusive and drift fluxes:

J(x, y, z, t) H vc(x, y, z, t)−D∇c(x, y, z, t). (7.66)

Using this constitutive relation in (7.62), the multidimensional reaction–advection–

diffusion equation is

∂c

∂t
+ v∇c− ∇ · (D∇c) H f. (7.67)

7.4.4 Boundary and Initial Conditions for Multiple Dimensions

As in one dimension, we must specify both initial and boundary conditions to pose

the problem completely. The only difference here is that the functions involved

are multidimensional, and so, when the spatial domain is complex, can be quite

complicated.

The Dirichlet boundary condition in multiple dimensions specifies the values of the

dependent variable c on the boundary, via c(x, y, z, t) H f (x, y, z, t) with x, y, z restricted

to the boundary. Similarly, the Neumann boundary condition specifies the flux of c on

the boundary via n · ∇c H g. Finally, the Robin condition specifies some relationship

between the flux of c and the value of c on the boundary via −n ·D∇c H h+ αc.

7.4.5 Diffusion in Multiple Dimensions: Symmetry

If the diffusion constant D does not vary in space or time, then the diffusive term can

be written

∇ · (D∇c) H D∇ · (∇c) H D∇2c. (7.68)
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In this expression, ∇2 is the “Laplacian operator,” which in Cartesian coordinates is

∇
2c H

∂2c

∂x2
+

∂2c

∂y2
+

∂2c

∂z2
. (7.69)

If the spatial domain is more naturally described by other coordinate systems, then the

representation of the Laplacian changes accordingly. For example, if the domain is a

long cylindrical tube, and the concentration is not expected to be uniform in tubular

cross-sections, then cylindrical coordinates (r, θ, z), where x H r cos θ, y H r sin θ, are

most appropriate. In these coordinates

∇
2c H

1

r

∂

∂r

(

r
∂c

∂r

)

+
1

r2

∂2c

∂θ2
+

∂c2

∂z2
. (7.70)

If the domain is a sphere, then spherical coordinates (r, θ, φ), where x H r sin φ cos θ, y H

r sin φ sin θ, z H r cos φ, are most appropriate, in which case the Laplacian operator is

∇
2 c H

1

r2

∂

∂r

(

r2 ∂c

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂c

∂θ

)

+
1

r2 sin2 θ

∂2c

∂φ2
. (7.71)

An important reason for using other coordinate systems is that there may be sym-

metries that allow the problem to be reduced. For example, suppose that a spherical cell

of radius R is suddenly immersed into a large bath containing a high concentration of

glucose, and that the glucose can move across the membrane and then diffuse through-

out the cell. If the concentration of glucose in the cell is initially uniform (c H c0), then

the solution should be independent of φ and θ for all time. This implies that

∂c

∂θ
H

∂c

∂φ
H

∂2c

∂φ2
H 0. (7.72)

Thus, a reasonable model for this problem is

∂c

∂t
H

D

r2

∂

∂r

(

r2 ∂c

∂r

)

, (7.73)

c(r, 0) H c0, (7.74)

D
dc

dr
H j at r H R, (7.75)

where c0 is the initial cytosolic glucose concentration, and j is the rate of entry of

glucose through the plasma membrane.

7.5 Traveling Waves in Nonlinear Reaction–Diffusion
Equations

Consider a reaction–diffusion equation with a nonlinear source term:

∂c

∂t
H D

∂2c

∂x2
+ f (c), (7.76)
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where f (c) is the cubic polynomial f (c) H Ac(1 − c)(c − α), with 0 < α < 1
2
. While real

chemical reactions are not modeled exactly by a cubic polynomial, the reaction term

has features that resemble those of several more realistic reactions, and so is worthy

of our attention. This equation can be (and has been) used to understand features of

action potential propagation in nerve axons, calcium fertilization waves in frog eggs,

and cyclic AMP waves in slime molds.

A key feature of this reaction term is that it has three zeros (0, α, and 1), two of

which (0 and 1) are stable. Linear stability is determined by the sign of f ′(c) at the

rest point, and if f ′(c0) < 0, the rest point c0 is stable. In this problem, however, there

is a stronger type of stability in that the solution of the ordinary differential equation
dc
dt
H f (c) approaches either c H 0 or c H 1 starting from any initial position except

c H α.

The function f (c) can be thought of as a switch. If c is somehow pushed slightly

away from 0, it returns quickly to 0. However, if c is pushed away from 0 and exceeds

α, then it goes to 1. Thus, the level α is a threshold for c. Because it has two stable rest

points, equation (7.76) is often called the bistable equation.

7.5.1 Traveling Wave Solutions

An interesting and important problem is to determine the behavior of the bistable equa-

tion when a portion of the region is initially above the threshold α and the remainder

is initially at zero. To get some idea of what to expect it is useful to perform a numer-

ical simulation. For this numerical simulation we use the method of lines to solve the

differential equations

dc0

dt
H

D

1x2
(c1(t)− c0(t))+ f (c0), (7.77)

dcn

dt
H

D

1x2
(cn+1(t)− 2cn(t)+ cn−1(t))+ f (cn), n H 1, 2, . . . , N − 1, (7.78)

dcN

dt
H

D

1x2
(cN−1(t)− cN(t))+ f (cN). (7.79)

The simulation shows that the variable c quickly changes into a profile that is a

transition between c H 0 on the bottom and c H 1 on the top (Figure 7.8). After this

transitional profile is formed, it moves without change of shape from top to bottom at

(what appears to be) a constant velocity.

This numerical solution suggests that we should try to find a translationally invari-

ant solution. A translationally invariant solution is one that does not change its value

along any straight line x + st H x0, for an appropriately chosen value of s, the wave

speed. Thus, we look for special solutions of the bistable equation of the form

c(x, t) H U(x+ st), (7.80)
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Figure 7.8 Numerically computed solution of

the bistable equation, with A H 1, α=0.1 and

D H 1.

with the additional property that limξ→−∞U(ξ) H 0, limξ→∞U(ξ) H 1. Notice that since

∂c(x, t)

∂x
H

d

dξ
U(ξ)

∂ξ

∂x
H

d

dξ
U(ξ) and

∂c(x, t)

∂t
H

d

dξ
U(ξ)

∂ξ

∂t
H s

d

dξ
U(ξ), (7.81)

in this translating coordinate system, the bistable equation becomes the ordinary

differential equation

s
dU

dξ
H D

d2U

dξ2
+ f (U). (7.82)

There are two ways to try to solve (7.82). An exact solution can be found in the

special case that f is a cubic polynomial. There are several other examples of functions

f for which exact solutions can be found, but this method does not work in most cases.

A more general method is to examine (7.82) in the phase plane, which we will do below.

The exact solution can be found for the cubic polynomial f as follows. Since we

want limξ→−∞U(ξ) H 0, limξ→∞U(ξ) H 1, we guess a relationship between dU/dξ and

U of the form

dU

dξ
H aU(1−U), (7.83)

for some positive number a. It follows that

d2U

dξ2
H a(1− 2U)

dU

dξ
. (7.84)

Substituting this into (7.82) and factoring out U(1−U), we find that

as H a2D(1− 2U)+ A(U − α). (7.85)

This identity holds for all U only if

a2 H
A

2D
, s H

√
AD/2 · (1− 2α). (7.86)
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The solution is found by quadrature from (7.83) to be

U(ξ) H
1

2
+

1

2
tanh

(

1

2

√

A

2D
ξ

)

. (7.87)

The analysis used for finding traveling waves using phase portraits works for

any bistable function f . We begin by writing the traveling wave (7.82) as the

two-dimensional system

dU

dξ
HW, (7.88)

dW

dξ
H sW − f (U). (7.89)

This system has three critical points, at (U, W) H (0, 0), (α, 0), and (1,0). The lin-

earized stability of these critical points is determined by the roots of the characteristic

equation

λ2
− sλ+ f ′(U0) H 0, (7.90)

where U0 is any one of the three steady rest values of U.

If f ′(U0) is negative, then the critical point (U0, 0) is a saddle point. To find a trav-

eling wave solution, we seek a trajectory that leaves the saddle point at (U, W) H (0, 0)

and ends up at the saddle point at (U, W) H (1, 0). We can implement this (almost)

numerically. If we start with an initial point close to the origin along the straight line

W H λU in the positive quadrant, with λ the positive root of the characteristic equa-

tion λ2
− sλ + f ′(0) H 0, and integrate for a while, one of two things will occur. If s is

relatively small, the trajectory will cross the U–axis before reaching U H 1, while if s is

relatively large, the trajectory will increase beyond U H 1 and become quite large. By

adjusting the parameter s one can find trajectories that barely miss hitting the point

(U, W) H (1, 0) by crossing the U–axis or by exceeding U H 1 and becoming large

(Figure 7.9). A trajectory that comes close to the saddle point at (U, W) H (1, 0) is a nu-

merical approximation to the traveling wave solution, and the value of s for which this

nearly connecting trajectory is attained is a good approximation for the wave speed.

7.5.2 Traveling Wave in the Fitzhugh–Nagumo Equations

As we have seen in earlier chapters, chemical reaction schemes in cell biology can be

quite complicated, involving many species. Furthermore, some species may be free

to move, while others are not. Models of nerve axons, for example, include both dif-

fusing species (transmembrane potential) and nondiffusing variables (the ion-gating

variables, because ion channels are embedded in the membrane and do not move on

the millisecond time scale of an action potential). Similarly, the Ca2+ wave induced by

fertilization of a frog egg involves both cytosolic calcium, which is a diffusing variable,

and ER calcium which, (to a first approximation) is not.
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Figure 7.9 Phase plane portrait of possible

traveling wave trajectories.

Perhaps the best known example of a reaction–diffusion system is the Hodgkin–

Huxley equations discussed in Section 2.5, which describe action potential propagation

in a nerve axon. In this model there are four dependent variables: transmembrane

potential V and three gating variables, m, n, and h. The equation for transmembrane

potential V(x, t) is the cable equation

Cm
∂V

∂t
H

R

2ρ

∂2V

∂x2
+ Iion(V, m, n, h), (7.91)

where Cm is the membrane capacitance, R is the axonal radius, ρ is the axoplasmic

resistivity, and Iion is the current carried into the axon by ions crossing through voltage-

sensitive channels, and R
2ρ

∂2V
∂x2 is the net current along the axon carried by ions in

response to spatial gradients of intracellular potential. For the giant axon of the squid,

Hodgkin and Huxley report that R H 240 µm, ρ H 0.35 �·m, and Cm H 0.01 F/m2.

In the Hodgkin–Huxley equations given in Section 2.5, Iion is a complicated func-

tion of transmembrane potential and the gating variables. To simplify the function,

FitzHugh lumped the three gating variables into one (called w). The resulting equations

in spatial form are

∂V

∂t
H D

∂2V

∂x2
+

B

V1V2

V(V − V1)(V2 − V)− C
√

V1V2w, (7.92)

∂w

∂t
H

ǫ
√

V1V2

(V − V3w), (7.93)

where D H R/(2ρCm) ≈ 0.03 m2/s (for squid giant axon), V1, V2, and V3 are positive

“voltage” constants, and B, C, and ǫ are rate constants with units 1/s. It is also assumed

that ǫ≪ B, C.

By defining v H V/
√

V1V2, we transform (7.92) and (7.93) into

∂v

∂t
H D

∂2v

∂x2
+ Bv(v− β)(δ− v)− Cw, (7.94)
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∂w

∂t
H ǫ(v− γw), (7.95)

where β H V1/
√

V1V2, δ H V2/
√

V1V2, and γ H V3/
√

V1V2. Because ǫ ≪ B, C, we can use

reduction of scale arguments (see Chapter 4) to justify the assumption that w(x, t) H
w0 H constant. In this case, (7.94) and (7.95) reduce to a single reaction–diffusion

equation:

∂v

∂t
H D

∂2v

∂x2
+ Bv(v− β)(δ− v)− Cw0. (7.96)

Let us assume that the “reaction” part of (7.96), G(v) H Bv(v− β)(δ− v)−Cw0, has

three real steady states

G(vi) ≡ Bvi(vi − β)(δ− vi)− Cw0 H 0, for i H 1, 2, 3; v1 < v2 < v3.

By defining c H (v− v1)/(v3 − v1), (7.96) becomes identical to (7.76), with A now some

nonlinear function of B, β, δ, and Cw0. Hence, from the results leading to (7.86), we

know that for appropriate choices of β, δ, and Cw0, (7.96) supports traveling wave

solutions of velocity

s H
√

AD/2 · (1− 2α).

To estimate the velocity of propagation of an action potential wave front, we must

have, in addition to D ≈ 0.03 m2/s, estimates of the rate constant A and the threshold

α in the f (c) term of (7.76). Given that the amplitude of an action potential is ≈ 100

mV, and that the threshold for initiation is ≈ 20 mV (from rest), we set α ≈ 0.2. During

the rise of an action potential, V increases with a doubling time of a fraction of a

millisecond (say, 0.2 ms). Trajectories of the reaction equation dc/dt H f (c) depart from

the unstable steady state according to

c(t)− α H (c0 − α) exp(Aα(1− α)t). (7.97)

To verify this, set c H y+α and linearize dc/dt H f (c) to get dy/dt H f ′(α)y and then solve

to obtain (7.97). The doubling time for departure from the unstable steady state is

ln 2

Aα(1− α)
≈ 0.2 ms.

or A ≈ 2 · 104/s. Hence, if the upstroke of the action potential can be approximated by

the FitzHugh–Nagumo equations, it should propagate at velocity

s ≈

√

(2 · 104/s)(3 · 102m2/s)

2
· (1− 0.4),

or approximately 10 m/s. This compares favorably with the observed velocity of 20 m/s.
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Suggestions for Further Reading

• Random Walks in Biology, Howard Berg. This is a lovely introductory book on

diffusion processes in biology (Berg 1993).

• Mathematical Problems in the Biological Sciences, S. Rubinow. Chapter 5 gives a

nice introduction to diffusion processes (Rubinow 1973).

• Diffusional mobility of golgi proteins in membranes of living cells, N.B. Cole, C.L.

Smith, N. Sciaky, M. Terasaki, and M. Edidin. This paper gives an example of how

diffusion coefficients are measured in a specific biological context (Cole et al. 1996).

• Complex patterns in a simple system, John Pearson. Reaction diffusion equations

are used to model many interesting phenomena. A sampler of the kinds of patterns

that are seen in reaction diffusion systems is given in this paper (Pearson 1993).

• The theoretical foundation of dendritic function, Idan Segev, John Rinzel, and Gor-

don Shepard. This book contains the collected papers of Wilfrid Rall, a pioneer in

the application of cable theory and compartment modeling to neuronal dendrites

(Segev et al. 1995).

• Mathematical Physiology, James Keener and James Sneyd. Several of the topics

presented in this chapter are covered here in more depth (Keener and Sneyd 1998).

7.6 Exercises

1. A rule of thumb (derived by Einstein) is that the diffusion coefficient for a globular molecule
satisfies D ≈ M−1/3 where M is the molecular weight. Determine how well this relationship
holds for the substances listed in Table 7.1 by plotting D and M on a log-log plot.

2. (a) Verify that the solution of (7.36)–(7.37) is given by (7.38). Verify (7.41).

(b) Show that the total amount of C, given by
∫

∞

−∞
c(x, t) dx, is constant for all time. What

is the constant?

3. Verify that (7.43) satisfies the diffusion equation with boundary data c(0, t) H C0 and initial
data c(x, 0) H 0.

4. Using the data given in the text and equation (7.45), estimate the diffusion coefficient for
bacteria.

5. Numerically simulate the differential equations (7.53), (7.55), and (7.56) with initial data
corresponding to c(x, 0) H 1 for 20 < x < 30 and c(x, 0) H 0 elsewhere, using N H 40 discrete
intervals and D H 2.25 × 10−6 cm2/s as a typical diffusion coefficient for calcium. What is
the final steady–state distribution of calcium and what is the approximate time constant of
decay to this steady solution?

6. Numerically simulate a voltage–clamp experiment on a spatial domain that is 4 space con-
stants long with V(0, t) H 1, and V(x, 0) H 0, using constants appropriate for barnacle fiber
and squid giant axon. What are the observable differences between these two simulations?

7. (a) Show that the function

c(r, t) H
1

4πDt
e

(

−
r2

4Dt

)
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satisfies the diffusion equation in two spatial dimensions,

ct H
D

r

∂

∂r

(

r
∂c

∂r

)

,

where r2
H x2

+ y2.

(b) Show that the total amount of C, given by 2π
∫

∞

0
c(r, t)rdr, is constant for all time. What

is the constant?

(c) Evaluate rrms where r2
rms H 2π

∫

∞

0
r2c(r, t)rdr.

(d) When is the maximal value of c(r, t) achieved and what is the maximal value?

8. (a) Show that the function

c(r, t) H
1

(4πDt)3/2
e

(

−
r2

4Dt

)

satisfies the diffusion equation in three spatial dimensions,

ct H
D

r2

∂

∂r

(

r2 ∂c

∂r

)

,

where r2
H x2

+ y2
+ z2.

(b) Show that the total amount of C, given by 4π
∫

∞

0
c(r, t)r2dr, is constant for all time.

What is the constant?

(c) Evaluate rrms where r2
rms H 4π

∫

∞

0
r2c(r, t)r2dr.

(d) When is the maximal value of c(r, t) achieved and what is the maximal value?

9. A quantitative estimate of the way proteins diffuse on membranes is provided by flu-
orescence recovery after photobleaching (FRAP) studies, wherein cells are treated with a
fluorescent reagent that binds to a specific surface protein, which is uniformly distributed
on the surface. A laser light is then focused onto a small area of the surface, irreversibly
bleaching the bound reagent and thus reducing the fluorescence in the illuminated area. In
time, the fluorescence of the bleached area increases because the unbleached fluorescent
surface molecules diffuse into the bleached area while the bleached molecules diffuse out.
Model and simulate this experiment in two ways:

(a) Make a one–dimensional model for a domain 10 microns long, with no-flux boundary
conditions at both ends. Assume that the first micron is initially bleached and the
remaining space is initially unbleached. Assume that the diffusion coefficient of the
molecules is 10−7 cm2/s. Determine the spatial profile as a function of time, and the
final uniform distribution of unbleached protein.

(b) Make a two–dimensional model for a perfectly circular domain of radius 10 microns
with a one–micron circular region at the center that is initially bleached. Assume that
∂c/∂r H 0 at both r H 0 and r H 10 µm. Use the discretization of the diffusion operator
given by

1

r

∂

∂r

(

r
∂c

∂r

)

≈
1

2rn
((rn+1 + rn)(cn+1 − cn)− (rn−1 + rn)(cn − cn−1)) .

Determine the spatial profile as a function of time and the final uniform distribution.
What differences are there between the two-dimensional and the one-dimensional
models?
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10. Simulate the bistable equation starting from initial data having V(x, 0) > α for a small region
on the left end of the domain, and V(x, 0) H 0 elsewhere. What is the speed of the traveling
wave that forms?

11. Numerically simulate an experiment on an idealized nerve axon that is stimulated at one
end with a time–dependent current input. The equations are

∂φ

∂t
H

∂2φ

∂x2
+ f (φ)−w, f (φ) H φ(φ − 1)(0.1− φ),

∂w

∂t
H 0.01(φ − 0.5w),

subject to boundary conditions ∂φ(0, t)/∂x H I(t), ∂φ(10, t)/∂x H 0. Pick I(t) to be a square
pulse. Vary the height and length of the pulse in order to initiate a traveling wave. Describe
the response when the amplitude and/or duration of the stimulating pulse is too small to
initiate a traveling wave.

12. Using the method described in Section 7.5.1, compute a traveling wavefront solution to the
Morris–Lecar equations described in Section 2.4:

∂V

∂t
H D

∂2V

∂x2
− gCam∞(V)(V − VCa)− gkw(V − VK)− gL(V − VL)+ Iapp

where m∞(V) H 0.5[1 + tanh((V − v1)/v2)]. Use D H 300 cm2/s, Iapp H 60 pA, and all
other parameter values as in Table 2.4. In this approximation, assume that w(x, t) H w0 H

constant; try w0 H 0.1. Plot V(x, t) as in Figure 7.8, and estimate the speed of propagation
of the wavefront in cm/s.


