
List of questions and typical problems to examination in ODE and Mathematical Modeling MMG511/TMV160.              

One must know (in this order!):  

 definitions to all notions, 

  all formulations of the theorems from the list,  

 must be able to prove theorems marked by yellow, 

 must be able to solve problems of the types mentioned in the list.   

Topics, definitions and notions Methods, theorems, lemmas and corollaries Typical problems  

Classification of ODE: order, autonomous, 
non-autonomous, linear. 
Initial value problem: existence, 
uniqueness. 
Integral curve.  
Maximal existence time for solutions of 1-
dimensional autonomous ODE 

Solutions to first order 1-dimensional 
autonomous ODE: existence, uniqueness, 
extensibility, limits of solutions:  §1.3 p. 9,   
formulas 1.21- 1.25 
 Lemma 1.1, p. 21 on trajectories of scalar 
autonomous ODEs and structure of their phase 
portrait. 
Theorem 1.3 with the consequence on 
uniqueness, p.27 
 

Solve 1-dimensional first order ODEs: 
linear ODE, ODE with separable 
variables. 
Find maximal existence time.  
Decide if an equation has unique 
solutions 
Give examples of non-uniquness of 
solutions (like pp. 10-11.) 
Find fixed points and limit properties 
of solutions.  
Identify Lipschitz functions. 

Lipschitz continuous functions, § 1.5 Theorem 1.3   

§3.1-2. Linear system of ODE with constant 
matrix. x’=Ax 
Matrix norm. Change of variables. 
Equivalent matrices U^-1AU and A.  
Polynom P(A) and exponent exp(A) of a 
matrix A. 
det A, trace Tr(a) for equivalent matrices.  
Jordan canonical form of matrix J, f. 3.15-16  
Jordan block:  formula 3.16, p.61, 3.192,  
p.106 
Block diagonal matrices.   
Generalized eigenspaces and generalized 
eigenvectors: formula 3.184, p.104  
Transformation leading to Jordan canonical 
form of matrices:  
U^-1AU=J, A=UJU^(-1). 
(lecure notes or f. 3.192, p. 106) 

For commuting matrices: AB=BA 
exp(A+B)=exp(A)exp(B)  
Lemma 3.1. p. 6. 
Theorem 3.2 on Jordan canonical form, p. 61  
Exponent of Jordan block: 3.19, p.63,  3.42, p. 70 
 Polynomial and exponent of block diagonal 
matrices. 3.17, p.62 and lecture notes. 
Exponent of an arbitrary matrix using 3.17, p.62. 
Classification of phase portraits of linear systems 
with constant matrix. p. 67-70 and lecture notes.  
Theorem 3.4 on stable and unstable generalized 
eigenspaces. p.71 
Corollary 3.5, on stable linear systems. p. 71 
Corollary 3.6, on asymptotically stable linear 
systems p.71  
Duhamel formula 3.48 p.72 for non 
homogeneous linear systems with constant 
matrix 
 

Compute exponent of a 2x2 matrix or 
an arbitrary Jordan matrix. 
2-dimensional  linear systems in 
plane: classify and draw phase 
portraits (Problem 3.14). 
Solve IVP for a linear autonomous 
system in the plane or in space if 
eigenvalues are given or are easy to 
calculate . 
 Solve  inhomogeneous linear systems 
of ODE with constant matrix. 
Decide if a vector valued function can 
be solution to a linear system ODE. 
(Problem like 3.12. p 73) 
Use Corollaries 3.5, 3.6 to conclude 
about stability or asymptotic stability 
of the fixed point in the origin.  

Non-autonomous linear systems 
Principle matrix solution. f. 3.81, p.81 
Fundamental matrix solution. p. 83. 
Stable and asymptotically stable linear 
systems (origin is in this case stable or 
unstable fixed point according to  the 
general notion of fixed point that comes 
later in Chapter 6.)  
 

Theorem 3.10 on existence of solutions 
Superposition principle. P.81 
Theorem 3.10. p.82 on the dimension of the 
solution space (proof in lecture notes). 
Duhamel formula 3.97 p.84 for non-
homogeneous non- autonomous linear 
equations. 
Liouvilles formula 3.91,  p.83  

Find principle matrix solution for a 
simple equation that can be solved 
explicitly.  
 

Linear systems with periodic coefficients. 
Monodromy matrix.  f. (3.119), p. 91 
Floquet exponents. P. 93  
Floquet multipliers. 
Matrix logarithm 3.121, p. 91, 3.200, p. 108 

Principal matrix of periodic linear system is  is 
periodic:  
Lemma 3.14, p.91 
Floquet theorem 3.15, p.92. Formula 3.125 on 
the structure of principal matrix for a linear 
system x’=A(t)x with periodic matrix A(t).  
Corollary 3.17, p. 93 about the stability of 
periodic linear systems.  

 Find a monodromy matrix for a 
simple equation that can be solved 
explicitly. 
 

§2.1 Fixed point theorems  
Normed vector space, p. 33 
Cauchy sequence 2.5, p.34 
complete space, Banach space: p.34. 
Space C(I) of continuous functions on a 
compact I. Uniform convergence p.34 
Open, closed, compact, connected sets,  
Fixed point of an operator. p.35 
Contraction. p.35 
Sequence of iterations,  p. 34 in the proof 
of Theorem 2.1 

Banach contraction principle. Theorem 2.1 p.35 
Theorem 2.4, p. 39. 
Method with telescoping sums in the proof to 
Theorem 2.1 

Show that an operator is a contraction 
in C(I). 
Show using Banach’s contraction 
principle that an operator has a fixed 
point in a ball. 



 

 

Topics, notions, definitions Methods, theorems, lemmas and corollaries Typical problems 

§2.2,  Existence and uniqueness theory 
for IVP (Initial Value Problem) 
Integral formulation of IVP. 2.11, p. 36 
Picard iterations. 2.13, p. 36 
Lipschitz functions. 2.18 , p. 37 
 

Picard-Lindelöf theorem. 2.2 
Two variants of the proof: by contraction principle p. 37-38, 
and by an exponential estimate (in lecture notes and in the 
proof to Theorem 2.5 that we did not study)    

Identify Lipschitz functions of 
several variables. 
Write explicitly 2-3 Picard 
iterations for an equation. 

 

§2.4 Dependence of solutions on 
initial data and right hand side 
Gronwall’s inequality 2.38, p. 43. 
(only this simpler variant) 
Well posed problems: dependence of 
initial data, dependence on right hand 
side, p.42.  
 

Gronwall’s inequality, 2.38, p. 43: proof in lecture notes. 
Theorem 2.8, formula 2.40 p. 43 on the dependence of 
solutions on initial data and on the right hand side of ODE 

Use Theorem 2.8 to estimate 
difference between solutions 
a particular ODE  with 
different initial data or 
between solutions to two 
particular ODE  

§2.5 Extensibility of solutions 
Compact set. 
Extensibility 
Maximal existence interval  
(T-,T+), maximal solution.p.51 
Global solution p. 51 
 

Lemma 2.14, p. 52 on extensibility of solutions for which  
values x(t_m) on a time sequence of  t_m ->T+ converge to a 
point y in the domain U of the right hand side.    
Corollary 2.15 on extensibility of solutions that stay within a 
compact subset of the domain U of the right hand side. 
Corollary 2.16 on non extensibility of solutions p. 53 : solution 
leaves any compact if the maximal existence time T+  is 
bounded. 
Global existence for equations with linear growth of the right 
hand side. Theorem 2.17 p. 53 

Decide for solutions, starting 
in a certain domain how long 
they can be extended and 
which limits they might have.  
 

§3.7  Stability by linearization. 
Linearization of ODE 
Definitions of stable and exponentially 
stable fixed points in nonlinear case 
comes in Chapter 6, p.198, but 
Theorem 3.26 and Corollary 3.27 deal 
in fact with asymptotic stability of the 
fixed point in the origin. 

Stability of the perturbation of a linear  
non – autonomous ODE by a non-linear right hand side. 
Theorem 3.26, p. 101.  
Stablity of autonomous non-linear ODE by linearization. 
Corollary 3.27. p.101  
Proofs of both statements use Gronwall’s inequality and are 
the same as to Theorem 3.20, a proof is also given in lecture 
notes. 

Use stability theorems to 
decide under which 
conditions a solution starting 
at some distance to the origin 
goes to zero as  t goes to 
infinity. 

Autonomous systems.  
Stability of fixed points by 
linearization 
 §6.2-6.3 maximal integral curves, 
orbits, fixed points(orbits), periodic 
orbits, non-periodic orbits, invariant 
sets,  limit sets.pp.192-193 
Stable fixed points.  Asymptotically 
stable fixed points. p. 198,   
Unstable fixed points (check an explicit 
definition in lecture notes)  
 

Asymptotic stablity of autonomous non-linear ODEs by 
linearization Theorem 6.10  
(the same as Corollary 3.27 p. 101)  
 
 

 

Prove that an ODE has a 
positively  invariant set. 
Show stability of a fixed point 
using Theorem 6.10. 
 

Stability of fixed points by Liapunovs 
functions 
Liapunovs function, p. 200 
strict Ljapunov function, p.201 
Derivative (Lie derivative) of a scalar 
function along trajectories. 6.41, p. 202 
More practical definitions for smooth 
C^1 Liapunovs functions 6.40, p.202 
and in lecture notes. 
 

Stability of fixed points to autonomous ODE by Liapunovs 
functions: Theorem 6.13. (simple proof in lecture notes, a  
more involved one in Lemmas 6.11, 6.12 p.201) 
 Asymptotic stability of fixed points to autonomous ODE by 
strict Liapunovs functions (follows from Theorem 6.14 and 
from a separate proof in lecture notes)   
Asymptotic stability of fixed points to autonomous ODE by 
“weak” Liapunovs functions  and Krasovskii-LaSalle Theorem 
6.14., p.202 
Instability of a fixed point by Liapunov’s method (lecture 
notes) 

Find a Liapunov function 
(strict Liapunovs function)  
Show stability (asymptotic 
stability) of a fixed point of 
an ODE  using theorem 6.13 
or a strict Liapunov function. 
 
Apply  Krasovskii-LaSalle 
Theorem 6.1 to show 
asymptotic stability of a fixed 
point using a “weak”Liapunov 
function 
Show instability of a fixed 
point. 
 

   

Examples of periodic solutions to 
autonomous systems in plane  

§6.4 The Poincare map. F. 6.25 P.197 
Ljenard and Van der Pol equations  

Connection between Poincare map and periodic solutions, 
bottom of p.197 
Phase portrait for Volterra Lotka equation  p. 210 
Poincare Bendixson theorem 6.7.13 p. 222 

Prove that an ODE has at  
least one periodic solution by 
Poincare Bendixson theorem. 
Prove that an ODE in plane 



Volterra Lotka equation, p. 209 A limit set of a solution in a compact positively invariant set 
without fixed points is a periodic orbit. (without proof). 
Problem 7.11, ( Bendixson’s criterion)  p. 227 
 

does not have periodic 
solutions using Bendixsons 
criterion.  
  

 


