List of questions and typical problems to examination in ODE and Mathematical Modeling MMG511/TMV160. One must know (in this order!):

- definitions to all notions,
- all formulations of the theorems from the list,
- must be able to prove theorems marked by yellow,
- must be able to solve problems of the types mentioned in the list.

Topics definitions and notions	Matheds theorems lommas and corollaries	Typical problems
Classification of ODE: order, autonomous, non-autonomous, linear. Initial value problem: existence, uniqueness. Integral curve. Maximal existence time for solutions of 1- dimensional autonomous ODE	Solutions to first order 1-dimensional autonomous ODE: existence, uniqueness, extensibility, limits of solutions: §1.3 p. 9, formulas 1.21-1.25 Lemma 1.1, p. 21 on trajectories of scalar autonomous ODEs and structure of their phase portrait. Theorem 1.3 with the consequence on uniqueness, p.27	Solve 1-dimensional first order ODEs: linear ODE, ODE with separable variables. Find maximal existence time. Decide if an equation has unique solutions Give examples of non-uniquness of solutions (like pp. 10-11.) Find fixed points and limit properties of solutions. Identify Lipschitz functions.
Lipschitz continuous functions,	§ 1.5 Theorem 1.3	
 §3.1-2. Linear system of ODE with constant matrix. x'=Ax Matrix norm. Change of variables. Equivalent matrices U^-1AU and A. Polynom P(A) and exponent exp(A) of a matrix A. det A, trace Tr(a) for equivalent matrices. Jordan canonical form of matrix J, f. 3.15-16 Jordan block: formula 3.16, p.61, 3.192, p.106 Block diagonal matrices. Generalized eigenspaces and generalized eigenvectors: formula 3.184, p.104 Transformation leading to Jordan canonical form of matrices: U^-1AU=J, A=UJU^(-1). (lecure notes or f. 3.192, p. 106) 	For commuting matrices: AB=BA exp(A+B)=exp(A)exp(B) Lemma 3.1. p. 6. Theorem 3.2 on Jordan canonical form, p. 61 Exponent of Jordan block: 3.19, p.63, 3.42, p. 70 Polynomial and exponent of block diagonal matrices. 3.17, p.62 and lecture notes. Exponent of an arbitrary matrix using 3.17, p.62. Classification of phase portraits of linear systems with constant matrix. p. 67-70 and lecture notes. Theorem 3.4 on stable and unstable generalized eigenspaces. p.71 Corollary 3.5, on stable linear systems. p. 71 Corollary 3.6, on asymptotically stable linear systems p.71 Duhamel formula 3.48 p.72 for non homogeneous linear systems with constant matrix	Compute exponent of a 2x2 matrix or an arbitrary Jordan matrix. 2-dimensional linear systems in plane: classify and draw phase portraits (Problem 3.14). Solve IVP for a linear autonomous system in the plane or in space if eigenvalues are given or are easy to calculate . Solve inhomogeneous linear systems of ODE with constant matrix. Decide if a vector valued function can be solution to a linear system ODE. (Problem like 3.12. p 73) Use Corollaries 3.5, 3.6 to conclude about stability or asymptotic stability of the fixed point in the origin.
Non-autonomous linear systems Principle matrix solution. f. 3.81, p.81 Fundamental matrix solution. p. 83. Stable and asymptotically stable linear systems (origin is in this case stable or unstable fixed point according to the general notion of fixed point that comes later in Chapter 6.)	Theorem 3.10 on existence of solutions Superposition principle. P.81 Theorem 3.10. p.82 on the dimension of the solution space (proof in lecture notes). Duhamel formula 3.97 p.84 for non- homogeneous non- autonomous linear equations. Liouvilles formula 3.91, p.83	Find principle matrix solution for a simple equation that can be solved explicitly.
Linear systems with periodic coefficients. Monodromy matrix. f. (3.119), p. 91 Floquet exponents. P. 93 Floquet multipliers. Matrix logarithm 3.121, p. 91, 3.200, p. 108	Principal matrix of periodic linear system is is periodic: Lemma 3.14, p.91 Floquet theorem 3.15, p.92. Formula 3.125 on the structure of principal matrix for a linear system x'=A(t)x with periodic matrix A(t). Corollary 3.17, p. 93 about the stability of periodic linear systems.	Find a monodromy matrix for a simple equation that can be solved explicitly.
§2.1 Fixed point theorems Normed vector space, p. 33 Cauchy sequence 2.5, p.34 complete space, Banach space: p.34. Space C(I) of continuous functions on a compact I. Uniform convergence p.34 Open, closed, compact, connected sets, Fixed point of an operator. p.35 Contraction. p.35 Sequence of iterations, p. 34 in the proof of Theorem 2.1	Banach contraction principle. Theorem 2.1 p.35 Theorem 2.4, p. 39. Method with telescoping sums in the proof to Theorem 2.1	Show that an operator is a contraction in C(I). Show using Banach's contraction principle that an operator has a fixed point in a ball.

Topics, notions, definitions	Methods, theorems, lemmas and corollaries	Typical problems
§2.2, Existence and uniqueness theory	Picard-Lindelöf theorem. 2.2	Identify Lipschitz functions of
for IVP (Initial Value Problem)	I wo variants of the proof: by contraction principle p. 37-38,	several variables.
Dicard iterations 2.12 p. 26	and by an exponential estimate (in fectore notes and in the	iterations for an equation
Linschitz functions 2.18 n 37	proof to medicin 2.5 that we did not study)	
§2.4 Dependence of solutions on	Gronwall's inequality, 2.38, p. 43: proof in lecture notes.	Use Theorem 2.8 to estimate
initial data and right hand side	Theorem 2.8, formula 2.40 p. 43 on the dependence of	difference between solutions
Gronwall's inequality 2.38, p. 43.	solutions on initial data and on the right hand side of ODE	a particular ODE with
(only this simpler variant)		different initial data or
Well posed problems: dependence of		between solutions to two
initial data, dependence on right hand		particular ODE
side, p.42.		
§2.5 Extensibility of solutions	Lemma 2.14, p. 52 on extensibility of solutions for which	Decide for solutions, starting
Compact set.	values x(t m) on a time sequence of t m ->T+ converge to a	in a certain domain how long
Extensibility	point y in the domain U of the right hand side.	they can be extended and
Maximal existence interval	Corollary 2.15 on extensibility of solutions that stay within a	which limits they might have.
(T-,T+), maximal solution.p.51	compact subset of the domain U of the right hand side.	
Global solution p. 51	Corollary 2.16 on non extensibility of solutions p. 53 : solution	
	leaves any compact if the maximal existence time T+ is	
	bounded.	
	hand side. Theorem 2.17 p. 53	
§3.7 Stability by linearization.	Stability of the perturbation of a linear	Use stability theorems to
Linearization of ODE	non – autonomous ODE by a non-linear right hand side.	decide under which
Definitions of stable and exponentially	Theorem 3.26, p. 101.	conditions a solution starting
stable fixed points in nonlinear case	Stablity of autonomous non-linear ODE by linearization.	at some distance to the origin
comes in Chapter 6, p.198, but	Corollary 3.27. p.101	goes to zero as t goes to
in fact with asymptotic stability of the	Proofs of both statements use Gronwall's Inequality and are	infinity.
fixed point in the origin	notes	
Autonomous systems.	Asymptotic stablity of autonomous non-linear ODEs by	Prove that an ODE has a
Stability of fixed points by	linearization Theorem 6.10	positively invariant set.
linearization	(the same as Corollary 3.27 p. 101)	Show stability of a fixed point
§6.2-6.3 maximal integral curves,		using Theorem 6.10.
orbits, fixed points(orbits), periodic		
orbits, non-periodic orbits, invariant		
sets, limit sets.pp.192-193		
Stable fixed points. Asymptotically		
Stable fixed points. p. 198,		
definition in lecture notes)		
,		
Stability of fixed points by Liapunovs	Stability of fixed points to autonomous ODE by Liapunovs	Find a Liapunov function
functions	functions: Theorem 6.13. (simple proof in lecture notes, a	(strict Liapunovs function)
Liapunovs function, p. 200	more involved one in Lemmas 6.11, 6.12 p.201)	Show stability (asymptotic
strict Ljapunov function, p.201	Asymptotic stability of fixed points to autonomous ODE by	stability) of a fixed point of
function along trajectories 6.41 p. 202	from a congrate proof in locture notes)	an ODE using theorem 6.13
More practical definitions for smooth	Asymptotic stability of fixed points to autonomous ODE by	
C^1 Liapunovs functions 6.40, p.202	"weak" Liapunovs functions and Krasovskii-LaSalle Theorem	Apply Krasovskii-LaSalle
and in lecture notes.	6.14., p.202	Theorem 6.1 to show
	Instability of a fixed point by Liapunov's method (lecture	asymptotic stability of a fixed
	notes)	point using a "weak"Liapunov
		function
		Show instability of a fixed
		point.
Examples of periodic solutions to	Connection between Poincare map and periodic solutions,	Prove that an ODE has at
autonomous systems in plane	bottom of p.197	least one periodic solution by
§6.4 The Poincare map. F. 6.25 P.197	Phase portrait for Volterra Lotka equation p. 210	Poincare Bendixson theorem.
Ljenard and van der Pol equations	Poincare Bendixson theorem 6.7.13 p. 222	Prove that an ODE in plane

Volterra Lotka equation, p. 209	A limit set of a solution in a compact positively invariant set	does not have periodic
	without fixed points is a periodic orbit. (without proof).	solutions using Bendixsons
	Problem 7.11, (Bendixson's criterion) p. 227	criterion.