List of notions, methods, theorems and typical problems to examination in ODE and Mathematical Modeling MMG511/TMV162, year 2018.

(will be slightly updated with examples and references during the course)

References are given to pages in the course book by Logemann and Ryan.

One must know:

- definitions to all notions,
- all formulations of the theorems from the list,

must be able to prove theorems marked by green (or grey in black-white version),

• must be able to solve problems of the types mentioned in the list and to make conclusions from the theory.

Topics, definitions and notions	Methods, theorems, lemmas and corollaries	Typical problems
Preliminary notions form linear algebra and analysis Vector space, normed vector space, norm of a matrix. Cauchy sequence. Complete vector space (Banach space) Compact sets i \mathbb{R}^n . Continuous functions. Uniform convergence in the space of continuous functions.	 Background results from analysis Space C(I) of continuous functions on a compact I is a Banach space Example A.14, p. 272 Bolzano-Weierstrass theorem. Theorem A.16, p. 273 Weierstrass criterion on uniform convergence of functional series. Corollary A23 ,p. 277 	
Introduction 1.2 Initial value problem (I.V.P.), p.13 existence, uniqueness, Maximal solution. p. 13 Integral form of I.V.P. pp.16-17 Classification of ODEs: order, autonomous, non - autonomous, linear, non-linear	Elementary Examples 1.1-1.2, pp. 13-14 on existence, uniqueness, maximal existence time for solutions showing a blow up, global solutions p.15 Elementary solution methods for 1- dimensional ODEs of first order: linear ODEs pp.18-19, Ex. 1.5 ODEs with separable variables p. 15, Ex. 1.3	Solve an ODE with separate variables or a linear ODE of first order. Find maximal existence time interval for an explicit solution.

LINEAR SYSTEMS

Topics, definitions and notions	Methods, theorems, lemmas and corollaries	Typical problems
Preliminary notions form linear	A background result from analysis	Find principle matrix solution for a simple system of
algebra	Weierstrass criterion on uniform convergence of	ODE that can be solved explicitly (for example with
Vector space, normed vector space,	functional series. Corollary A23 ,p. 277	triangular matrix)
norm of a matrix.	Transition matrix function and fundamental matrix	
	solutions and their properties.	
General linear systems §2.1	• The construction of transition matrix function $\Phi(t, \tau)$.	
x'=A(t)x	Lemma 2.1, p.24	
	 Gronwall's inequality, Lemma 2.4, p. 27 	
Transition matrix function $\Phi(t,\tau)$	 A simple version of Gronwall's inequality, and 	
§2.1.1	uniqueness of solutions to I.V.P. of linear ODE. Th. 2.5,	
Solution space, p.30.	p.28 (we used only a simple version of Grönwall	
Fundamental system and fundamental	inequality on lectures, with constant under the integral	
matrix solution. Def. p.32	by taking max of $ A(s) $ under the integral, and	
Wronskian	repeated the same argument as for autonomous ODE	
	that was studied earlier. Corollary 2.9, p.34,	
	 Group properties of transition matrix function. 	
	Corollary 2.6, p.29	
	 On the dimension of the space of solutions to a 	
	linear system of ODEs. Prop. 2.7 statements (1) and	
	(3), p.30.	
	• Abel's formula: Formula 2.14 in Proposition 2.7, p. 30,	
	• Fundamental matrix for linear homogeneous ODE and	
	its connection with transition matrix function Prop. 2.8,	
	p. 33	
	Variation of constant (Duhamel's) formula	
	$\overline{x(t)} = \Phi(t,\tau)\xi + \int_{\tau}^{t} \Phi(t,\sigma)b(\sigma)d\sigma$	
	Form. 2.27, Th. 2.15, p.41- for general non-	
	homogeneous linear ODE.	
§2.1.3 Linear system of ODE with	Preliminary properties of block matrices and similar	Typical problems for linear autonomous systems
constant matrix (autonomous systems)	matrices.	Find general solution or solve I.V.P. for a linear
x'=Ax	 Polynomial of block diagonal matrices. 	autonomous system of ODE with constant matrix in
Matrix norm, formula A.10, A.11, p. 278		case when eigenvalues are given or are easy to

Linear change of variables in ODE. Matrices $B = P^{-1}AP$ and A are called	Determinant and eigenvalues of block triangular	calculate (use Theorem 2.11, p.35 and hints in the exercises on the homepage)
similar	matrices. • For two similar matrices A and $I = T^{-1}AT$	Solve a non - homogeneous linear system of ODEs
Polynom P(A), exponent exp(A) and	determinant, characteristic polynomial, eigenvalues,	x'(t) = Ax + b(t)
logarithm log(A) of a matrix A.	and trace Tr(A) are the same.	using Duhamel's formula in Corollary 2.17 p.43
Arbitrary functions of matrices		$x(t) = e^{A(t-\tau)}x(\tau) + \int_{-\tau}^{t} e^{A(t-\sigma)} b(\sigma) d\sigma$
Diagonalizable matrices,	 Property of matrix norm: AB <= A B , 	J_{τ} Decide if a vector valued function can be solution to
Block diagonal matrices.	A.12, p. 279	a linear system of ODEs just by checking it's
Algebraic and geometric multiplicity of	• Properties of exp(A), Lemma 2.10, without (2) p.34, in	structure.
eigenvalues pp. 268-269 Generalized eigenspaces and	particular: for two commuting matrices: AB=BA it	Find a basis of generalized eigenvectors to a matrix.
generalized eigenvectors p. 267	follows that exp(A+B)=exp(A)exp(B)	Use Theorem 2.11 to find if all solutions to a particular linear autonomous systems that are
Chains of eigenvectors (see lecture	Functions of two similar matrices A ans B are	bounded or tend to zero with t going to plus infinity.
notes)	expressed explicitly by each other for example: for	Use general solution to a linear autonomous system
Jordan canonical form of matrix J , p. 268	B=TAT^(-1); exp(B)=Texp(A)T^(-1), see p. 62 - in the	to find for which initial data solutions are bounded
Jordan block: p. 268	proofs to Th, 2.19 and 2.29, pp. 60 and 62,	or tend to zero with t going to plus infinity. Compute exponent of a 2x2 matrix or a block
Jordan canonical form of a matrix.	• The solution for linear systems of ODE with constant	diagonal matrix with eigenvalues that are easy to
Transformation leading to the Jordan	matrix and initial condition $x(\tau) = \xi$ is:	guess.
canonical form J of matrices: T^(-1)AT=J, A=TJT^(-1).	$x(t) = \exp((t - \tau)A\xi.$	Compute exponent of an arbitrary Jordan matrix.
1°(-1)A1-J, A-131°(-1).	• A simple version of Gronwall's inequality with	Consider a 2- dimensional linear system in plane: classify and draw a sketch of phase portrait.
	constant coefficient under the integral, and uniqueness	second and a second phase portrait.
	of solutions to I.V.P. for linear autonomous ODE.	
	Corollary 2.9, p. 34. We use a similar proof for the Th. 2.5, p. 28. in lecture notes	
	Theorem A.8, p.268 on generalized eigenspaces and	
	basis of eigenvectors and generalized eigenvectors.	
	Method to find a basis of generalized eigenvectors.	
	Theorem A.9, p.268 on Jordan canonical form of a	
	matrix.	
	Connection J=T^(-1)AT between a matrix A and its	
	Jordan canonical form J in terms of eigenvectors and generalized eigenvectors to A. See lecture notes.	
	Number of blocks in the Jordan form of matrix is	
	equal to the number of linearly independent	
	eigenvectors.	
	Structure of the general solution to linear ODE with	
	constant coefficients: Theorem 2.11, p.35 • Function of a Jordan block: formula. (2.47), p.61, -	
	two important particular cases are: the $f(J)=exp(J)$ and	
	f(J)=log(J); exponential function and for logarithm – see	
	lecture notes.	
	Theorem 2.12 and Corollary 2.13, p. 36 on stability	
	and asymptotic stability of solutions to linear autonomous systems of ODEs. The proof to Corollary	
	2.13 is the same as one to the Theorem 2.12, but a bit	
	simpler because of the more transparent formulation	
	of the Corollary. Alternative proof is available in lecture	
	notes.	
	Classification of phase portraits in plane for linear systems with constant matrix, see the link on the	
	systems with constant matrix, see the link on the homepage and lecture notes.	
	Variation of constant (Duhamel's) formula in	
	Corollary 2.17, p.43 for non - homogeneous linear	
	systems with constant matrix	
Linear systems with periodic	Fundamental matrix of periodic linear system with	Find a monodromy matrix for a simple equation that
coefficients.	period p is p- shift invariant: Formulas 2.31, 2.32, p.45	can be solved explicitly.
Logarithm and principal value of	Proposition 2.20 on existence of periodic solutions to	Find if a periodic linear system has periodic solutions.
logarithm for complex numbers.	a periodic linear system	Calculate Floquet multipliers for systems with
log(z)=log(z)+iArg(z) (meaning natural logarithm here)	Connection between the logarithm of a matrix and	separable variables where the transition matrix and the monodromy matrix can be calculated explicitely.
Logarithm and principal logarithm of a	the logarithm of its Jordan canonical form.	Decide if solutions to such a system all tend to zero
matrix. p. 52	Formula for logarithm of a Jordan block. Existence of principal logarithm of a non-decongrate	or stay bounded.
Monodromy matrix - the notion is not	• Existence of principal logarithm of a non-degenerate	Find using Corollary 2.33 if a periodic linear system
used in the book, but is introduced without this name as $\Phi(p, 0)$ value of	matrix - Proposition 2.29. p.53. • Floquet representation of transfer matrix for	has unbounded solutions.
without this name as $\Phi(p,0)$ value of the transition matrix $\Phi(t, \tau)$ in Floquet	periodic systems in Theorem 2.30, p.53.	
theory for linear systems with periodic	Floquet Theorem 2.31 on the connection between	
matrix A(t+p)=A(t).	the absolute values of Floquet multipliers and the	
Floquet (characteristic) multipliers are	boundedness and the zero limit of solutions to periodic	
eigenvalues to the monodromy matrix $\Phi(p,0)$: Definition p. 48	linear systems. p. 54 • Corollary 2.33, p 59 on a criterion for existence of	
	unbounded solutions to a periodic linear system.	
	ansounded solutions to a periodic lilledi system.	

Spectral mapping Theorem 2.19, p. 44, essentially in
the case $f(x)=exp(x)$ giving the connection between
characteristic multipliers and eigenvalues to the
logarithm of the monodromy matrix.

NONLINEAR SYSTEMS

Topics, notions, definitions	Methods, theorems, lemmas and corollaries	Typical problems
Background notions from analysis Metric and normed vector spaces, pp.269-270 Cauchy sequence. P. 270 complete space, Banach space: p.270 Open, closed, compact, connected sets p.270 Bounded, compact, precompact sets, p. 270 Space C(I) of continuous functions on a compact I. Uniform convergence p.273 Fixed point theorems Fixed point of an operator. Contraction map. p.278 in Th. A.25 Sequence of iterations, p. 278 in the proof of Theorem A.25	 Background results from analysis Space C(I) of continuous functions on a compact I is a Banach space. Example A.14, p. 272 Bolzano-Weierstrass theorem Theorem A.16, p. 273 Banach's contraction mapping principle. Theorem A.25, p.277 	Exercises on contraction principle. Show that an operator is a contraction in C(I). Show using the Banach contraction principle that a given operator has a fixed point in some ball.
Local existence and uniqueness theory for Initial Value Problem (IVP) Integral form of IVP, p. 102, p. 119 extension of solution, p. 106 maximal solution Lipschitz functions: formula 4.7, p. 115 Picard iterations, p.23	Local existence and uniqueness theory Gronwall's inequality Lemma 2.4, p. 27 Lipschitz condition and uniqueness of solutions Th. 4.17, p. 118, Th. 4.18, p. 119. Contraction mapping principle for existence and uniqueness theorem (Picard-Lindelöf theorem) Theorem. Th. 4.22, p.122, Steps 1 and 2 of the proof. Picard iterations (p. 23)	Identify Lipschitz functions of several variables. Use Gronwall inequality to estimate difference between solutions to an ODE with different initial data on a finite time interval. Write explicitly 2-3 Picard iterations (p. 23) for an equation. Find conditions for convergence of Picard iterations for a particular equation.
Extension (continuation) of solutions and maximal interval of existence. §4.2 Continuation (extensibility) of solution Maximal existence interval , p. 106 maximal solution, p. 106 Global solution	Nonlinear systems of ODE, Maximal solution. Existence of maximal solutions. Th. 4.8, p.108 Extensibility to a boundary point of the existence interval. Lemma 4.9, p. 110; Cor. 4.10, p. 111. On the size of the maximal interval Th. 4.11, p. 112 on possible limits and maximal existence intervals for maximal solutions Th. 4.25, p. 125 on possible limits and maximal existence intervals for maximal solutions Prop. 4.12, p.114, on "infinite" extensibility of solutions for ODE with linear bound on the right hand side.	Investigate if an ODE has global solutions. Decide for solutions, starting in a certain domain how long they can be extended and which limits they might have for time going to infinity. For example Examples 1.2 p. 14, 4.33 on the page 139 example 4.5, 4.6, 4.7 on pages 107-108
Transition map. Transition property Transition map or flow, for autonomous systems – translation property.	Transition map (dynamical system) Transition property, (Chapman Kolmogorov formula for non-linear systems) Theorem 4.26, pp. 126-127 The domain and continuity of transition map. Theorem 4.29, Lemma 4.30, p. 129	
Autonomous systems Limit sets and invariant sets. Positive, negative semi-orbits p. 141 to a flow (dynamical system). ω -limit point and α limit point, p. 142 ω -limit sets and α limit sets, p. 142 Positively invariant, negatively invariant sets, p. 142.	Properties of limit sets. Properties of limit sets: ω -limit sets are connected invariant sets Th. 4.38, p.143	Find an omega (positively) invariant set with desired properties for an ODE. Using test functions to identify positively - invariant sets to an ODE
Periodic solutions to autonomous systems in the plane Equilibrium (critical) points, p.145 periodic points, periodic orbits, non-periodic orbits, p. 146 Limit cycles are limit sets that are periodic orbits.	 Poincare - Bendixson theorem 4.46, p. 151 (without proof).: "A limit set of a solution in a compact positively invariant set without fixed points is a periodic orbit" Bendixsons criterion for the non-existence of periodic solutions: div(f) >0 or div(f)<0 in a simply connected domain U - without holes (after lecture notes on the home page) First integrals and periodic orbits. §4.7.2 Prop. 4.54, p. 161: level sets of first integrals in the plane that are closed curves are periodic orbits. 	Prove that an ODE has at least one periodic solution by Poincare Bendixson theorem. Prove that an ODE in plane does not have periodic solutions in a domain using Bendixson's negative criterion

Stability of equilibrium points of nonlinear systems. Chapter 4. Definitions of stable and asymptotically stable equilibrium points. Definition 5.1, p. 169 Def. 5.14, p.182. Stability by linearization Linearization of ODE. § 5.6, p.194	Stability of equilibrium points of nonlinear systems.Stability of autonomous non-linear ODEs bylinearization with Hurwitz variational matrix.Th. 5.27, p.193 and Corollary 5.29, p. 195.(the proof given on the lecture uses the Gronwallinequality and is available at the homepage).Grobman-Hartman theorem: solutions to a nonlinearsystem and its linearization around an equilibriumpoint are "equivalent" if all real parts of eigenvaluesto the variational matrix are non zero (lecture noteson the homepage without proof)	Show stability of a fixed point using Theorem 5.27, Corollary 5.29 about linearization with Hurwitz variational matrix Investigate stability of a fixed point using the Grobman- Hartman theorem about linearization.
Stability of fixed points by the method with Lyapunov functions. Lyapunov function, V(0)=0, V(x)>0 for x not 0 V_f <=0 strict Lyapunov function: the same but $V_f(x) < 0$ for x not 0	 Stability of equilibrium points to autonomous ODE by Lyapunovs functions: Theorem 5.2, p. 170 A constructive variant of the proof is available on the home page. Students are free to choose any variant of the proof to Th. 5.2 at the exam. Instability of fixed points to autonomous ODE by Lyapunovs method: Th. 5.7, p. 174 A constructive variant of the proof to a slightly weaker theorem is available on the home page. 	Show stability (asymptotic stability) of a fixed point of an ODE by Lyapunovs method. Show instability of a fixed point of an ODE by Lyapunovs method.
Invariance principles. Domain of attraction, Def. 5.19 p. 186 Globally attractive equilibrium Def. 5.21, p.187	Invariance principles. LaSalle's invariance principle Th.5.12, p.180; Proof in Exercise 5.9 on page 312 Asymptotic stability by "weak" Lyapunov's functon using Krasovsky-La Salle theorem. Th. 5.15, p. 183	Apply -LaSalles invariance principle to show asymptotic stability of a fixed point using a "weak" Lyapunov function. Find a domain of attraction for an asymptotically stable equilibrium point. Typical problems in the book are: Example 5.13, p. 181, Exercises 5.7, 5.8, p. 182