
1 LaSalle�s invariance principle and it�s appli-

cations to asymptotic stability and to ! -

limit sets. §5.2

Example. An elementary introduction to LaSalle�s invariance prin-
ciple.
We like to investigate stability of equilibrium poin tin the origin for the

system

x01 = x2

x02 = �x1 � x32

Using the simple test function V (x1; x2) = x21 + x
2
2 we observe that it is a

Lyapunov function for the system:

Vf (x1; x2) = rV � f(x1; x2) = �2x42 � 0

and the origin is a stable equilibrium point. On the other hand V is not a

strong Lyapunov function, because Vf (x1; x2) = 0 not only in the origin, but

on the whole x1 - axis where x2 is zero. We could ty to �nd a more so�sticated

On the other hand considering the vector �eld of velocities of this system

on the x1 - axis, we observe that they are crossing the x1 - axis (even are

orthogonal to it in this particular example) in all points except the origin. It

means that all trajectories of the system cross and immediately leave the x1 -

axis that is the line where Vf (x1; x2) = 0 (the Lyapunov function is not strong).

This observation shows that in fact the Lyapunov function V ('(t; �)) is strictly

monotone along trajectories '(t; �) everywhere except discret time moments,

when '(t; �) crosses the x1 - axis. More explicitely in polar coordinates r and

�: �
r2
�0
= �2r4 sin4 �

We can therefore conclude that V ('(t; �)) & 0 as t ! 1 and therefore,
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the origin is asymptotically stable equilibrium of this system of equations.

One can also get a more explicit picture of this dynamics by looking on the

equation for the polar angle �:

�
x2
x1

�0
= (tan(�))0 =

�0

cos2(�)

x02x1 � x01x2
x21

=
(�x1 � x32)x1 � (x2)x2

x21

=
(�x21 � x22 � x1x32)

x21
=
�r2 � cos � sin3 � r4

r2 cos2 �

�0 = �1� cos � sin3 � r2 = �1�
�
sin 2� sin2 �

�
r2

2

= �1� sin 2�(1� cos 2�)r
2

4
< 0, r < 2

We see that the trajectories tend to the origin going (non-uniformly) as spirals

clockwise around the origin.

This example demonstrates the main idea with applications of the LaSalles

invariance principle to asymptotic stability of equilibrium points.
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Proposition. Simple version of LaSalle�s invariance principle.
Theorem 5.15. p. 183
We �nd a simple "weak" Lyapunov function Vf (z) � 0 for z 2 U in the

domain U � G, 0 2 U: This fact implies stability of the equilibrium. Then
we check what happens on the set V �1f (0) where Vf (z) = 0. If the set V �1f (0)

contains no other orbits except the equilibrium point, this equilibrium point

in the origin must be asymptotically stable and it�s attracting region is the

whole domain U where these properties are valid.

The next theprem gives a simple criterion for having the whole space as

the domain of attraction for an asymptotically stable equilibrium point.

Theorem 5.22, p. 188. On global asymtotic stability

Assume that G = Rn. Let the hypothesis of the orem 5.15 hold with

U = G = Rn. If in addition the Lyapunov function V is radially unbounded:

V (z)!1, kzk ! 1

then the origin 0 is globally stable equilibrium that means that all solutions

k'(t; �)k ! 0, as t!1.
Exercise.
Show that all trajectories of the system

x0 = y

y0 = �x� (1� x2)y

that go through points in the domain kxk < 1; tend to the origin. Or by other
words, show that the origin is an asymptotically stable equilibrium and that

the circle kxk < 1 is it�s domain of attraction.
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More general formulation and a proof of the LaSalle�s invariance principle

use some general properties of transition mappings, and ! - limit sets. We

collect them here and give some comments about their proofs.

We consider I.V.P. and corresponding transition map '(t; �) for the system

x0 = f(x)

x(0) = �

with f : G! Rn, G - open, G � Rn, f is locally Lipschitz; � 2 G.
Proposition. Theorem 4.34, p.139 (consequence of Th. 4.29, p.

129)
The domain D = f(t; �) 2 I� �G, � 2 Gg of the transition map '(t; �) is

open and '(t; �) is continuous and even locally Lipschitz in D:

Proof of the Lipschitz property with respect to each of the variables follows

from the integral form of the I.V.P. and for � variable - from an application of

Grönwall inequality similar to the proof of uniqueness of solutions to I.V.P:

Proposition. Translation invariance of the transition mapping for
autonomous systems
(a non-linear version of the Chapman-Kolmogorov relation) The-

orem 4.35, p. 140.
The transition mapping '(t; �) has properties

(1) '(0; �) = � for all � 2 G
(2) if � 2 G and � 2 I� = Imax(�) - maximal interval for �, then

I'(�;�) = I� � �
'(t+ � ; �) = '(t; '(� ; �)); 8t 2 I� � �

Proof of this statement follows is similar to the proof of the Chapman

Kolmogorov relations for linear systems.
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We consider �rst a trajectory '(:::; �) starting at the point � 2 G and

�nishing at time � at the point '(� ; �) (blue curve). Then we continue this

movement from the last point '(� ; �) during time t (red curve) coming �nally

to the point '(t; '(� ; �)) in the right hand side of the equation in the con-

clusion. The fact that the equation is autonomous and independent of time

makes that this movement is equivalent to just moving with the �ow starting

from the point � during the total time t + � , that is the left hand side in the

equation. The illustration is borrowed from the proof for the linear systems.

The only di¤erence here is that we have a superposition '(t; '(� ; �)) of trans-

fer mappings in the non-linear case instead of the product of transfer matrices

in the linear case (that is also a superposition for linear mappings).

Main theorem on the properties of limit sets.

The next theorem on the properties of ! - limit sets collects properties of

! - limit sets valid for systems

of any dimension, in contrast with the Poincare - Bendixson theorem and

it�s generalization, that give a
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description of ! - limit sets only for systems in plane, or on 2-dimensional

manifolds.

Main theorem on the properties of limit sets. Theorem 4.38,
p.143

We keep the same limitations and notations for the autonomous system as

above.

Let � 2 G: If the closure of the poistive semi-orbit O+(�) is compact and
contained in G, then R+ � I� and the ! - limit set 
(�) � G is
1) non-empty

2) compact

3) connected

4) invariant (both positively and negatively): for any ! - limit point � 2

(�); I� = R; and '(t; �) 2 
(�) for all t 2 R.
5) '(t; �) approaches 
(�) as t!1:

lim
t!1

dist('(t; �); 
(�)) = 0

Remark
The most interesting statement in the theorem is statement 4). It means

that ! - limit sets consist of orbits of solutions to the system. Taking a starting

point � on the limit set 
(�) we get a trajectory '(t; �) that stays within this

set 
(�) in�nitely long both in the future and in the past.

A simple tool to satisfy conditions in this theorem is to �nd a compact

positively invariant set for the system that contains the point �. It can be

done using one of two methods discussed earlier.

Proofs of statements in the theorem are based on: general properties of

compact sets for 1) ,2), simple contradiction arguments and the de�nition of

the limit sets for 3) and the translation property of the transition mapping

'(t; �), together with continuity of '(t; �) for 4), a contradiction argument

togehter with the de�nition of ! - limit sets.
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LaSalle�s invariance principle

We formulate now the LaSalle�s invariance principle that generalizes ideas

that we discussed in the introductory example and gives a handy instrument

for localizing ! - limit sets of non-linear systems in arbitrary dimension.

Theorem 5.12, p.180
Assume that f is locally Lipschitz as before and let '(t; �) denote the �ow

generated by the corresponding system

x0 = f(x)

Let U � G be non-empty and open. Let V : U ! R be continuously

di¤erentiable and such that Vf (z) = rV � f(z) � 0. for all z 2 U . If � 2 U
is such that the closure of the semi-orbit O+(�) is compact and is contained

in U , then R+ � I� (maximal existence interval for �) and '(t; �) approaches
as t ! 1 the largest invariant set contained in V �1f (0) that is the set where

Vf (z) = 0.

Proof.
Proof given in the solution of Exercise 5.9, on p. 312.
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Example.

Consider the following system of ODEs:

(
x0 = 2y

y0 = �x� (1� x2)y
:

Show the asymptotic stability of the equilibrium point in the origin and

�nd it�s domain of attraction. (4p)
Solution.
We try the test function V (x; y) = x2 + 2y2 that leads to cancellation of

mixed terms in the directional derivative along trajectories:

Vf (x; y) = 4xy � 4xy � 4y2(1 � x2) = �4y2(1 � x2) that is not positive
for jxj � 1. Therefore the origin is a stable stationary point. Checking the

behavior of the system on the set of zeroes to Vf (x; y) inside the stripe jxj < 1
we consider (Vf )

�1 (0) = f(x; y) : y = 0; jxj < 1g. On this set y0 = �x and the
only invariant set in (Vf )

�1 (0) is the origin. The LaSalles invariance principle

implies that the origin is asymptotically stable and the domain of attraction

is the largest set bounded by a level set of V (x; y) = x2+2y2 inside the stripe

jxj � 1. The largest such set will be the interior of the ellipse x2 + 2y2 = C
such that is touches the lines x = �1. Taking points (�1; 0) we conclude that
1 = C. and the boundary of the domain of attraction is the ellipse x2+2y2 = 1

with halfs of axes 1 and
p
0:5 :
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