1 LaSalle’s invariance principle and it’s appli-
cations to asymptotic stability and to w -
limit sets. §5.2

Example. An elementary introduction to LaSalle’s invariance prin-
ciple.
We like to investigate stability of equilibrium poin tin the origin for the

system

/

Ty = —x — 1

Using the simple test function V (zy,z2) = 22 4+ 22 we observe that it is a

Lyapunov function for the system:
Vi(z1,79) = VV - f(21,19) = —215 < 0

and the origin is a stable equilibrium point. On the other hand V is not a
strong Lyapunov function, because Vy(z1,23) = 0 not only in the origin, but
on the whole x; - axis where x5 is zero. We could ty to find a more sofisticated

On the other hand considering the vector field of velocities of this system
on the z; - axis, we observe that they are crossing the x; - axis (even are
orthogonal to it in this particular example) in all points except the origin. It
means that all trajectories of the system cross and immediately leave the x; -
axis that is the line where V¢ (21, 23) = 0 (the Lyapunov function is not strong).
This observation shows that in fact the Lyapunov function V (¢(t, £)) is strictly
monotone along trajectories (t,£) everywhere except discret time moments,
when ¢(t, &) crosses the z; - axis. More explicitely in polar coordinates r and
0:

(rz), = —2rtsin*h

We can therefore conclude that V(¢(¢,€)) \, 0 as t — oo and therefore,



the origin is asymptotically stable equilibrium of this system of equations.
One can also get a more explicit picture of this dynamics by looking on the

equation for the polar angle 6:
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We see that the trajectories tend to the origin going (non-uniformly) as spirals
clockwise around the origin.
This example demonstrates the main idea with applications of the LaSalles

invariance principle to asymptotic stability of equilibrium points.



Proposition. Simple version of LaSalle’s invariance principle.
Theorem 5.15. p. 183

We find a simple "weak" Lyapunov function V;(z) < 0 for z € U in the
domain U C G, 0 € U. This fact implies stability of the equilibrium. Then
we check what happens on the set Vf_l(O) where Vi(z) = 0. If the set Vf_l(O)
contains no other orbits except the equilibrium point, this equilibrium point
in the origin must be asymptotically stable and it’s attracting region is the
whole domain U where these properties are valid.

The next theprem gives a simple criterion for having the whole space as
the domain of attraction for an asymptotically stable equilibrium point.

Theorem 5.22, p. 188. On global asymtotic stability

Assume that G = R”. Let the hypothesis of the orem 5.15 hold with
U = G = R". If in addition the Lyapunov function V is radially unbounded:

V(z) =00, |zl = o0

then the origin 0 is globally stable equilibrium that means that all solutions
||Q0(t7§)” - 07 as t — oo.
Exercise.

Show that all trajectories of the system
r =y
y = —x—(1-a%)y

that go through points in the domain ||z|| < 1, tend to the origin. Or by other
words, show that the origin is an asymptotically stable equilibrium and that

the circle ||z]] < 1 isit’s domain of attraction.



Exercise 5.17

The aim of this exercise is to show that the condition of radial unbound-
edness in Theorem 5.22 is essential.

Let f: B2 — B? be given by

f(z) = fz1,22) :{ (=21, 22) if 2222 > 1

(—z1,22828 — 20) if2822 < 1.

Define V: R? - R by

3
V(z)=V(z,2) =27+ 112

(a) Show that the equilibrium 0 of (5.1) is asymptotically stable.
(b) Show that the equilibrium 0 is not globally asymptotically stable.
(c) Show that V7 is not radially unbounded.



More general formulation and a proof of the LaSalle’s invariance principle
use some general properties of transition mappings, and w - limit sets. We
collect them here and give some comments about their proofs.

We consider I.V.P. and corresponding transition map (¢, ) for the system

Y = f()
w0) = ¢

with f: G — R", G - open, G C R", f is locally Lipschitz, £ € G.

Proposition. Theorem 4.34, p.139 (consequence of Th. 4.29, p.
129)

The domain D = {(t,£) € I¢ x G, & € G} of the transition map ¢(¢,€) is
open and ¢(t, ) is continuous and even locally Lipschitz in D.

Proof of the Lipschitz property with respect to each of the variables follows
from the integral form of the I.V.P. and for £ variable - from an application of
Gronwall inequality similar to the proof of uniqueness of solutions to I.V.P.

Proposition. Translation invariance of the transition mapping for
autonomous systems

(a non-linear version of the Chapman-Kolmogorov relation) The-
orem 4.35, p. 140.

The transition mapping ¢(t, ) has properties

(1) ¢(0,&) =€ forall £ € G

(2)if £ € Gand 7 € I¢ = [1hax(§) - maximal interval for &, then

Iy = Ile—7
pt+7.8) = otp(1,8), Vtel—r

Proof of this statement follows is similar to the proof of the Chapman

Kolmogorov relations for linear systems.



We consider first a trajectory ¢(...,£) starting at the point ¢ € G and
finishing at time 7 at the point ¢(7,£) (blue curve). Then we continue this
movement from the last point ¢(7,&) during time ¢ (red curve) coming finally
to the point ¢(t, ¢(7,&)) in the right hand side of the equation in the con-
clusion. The fact that the equation is autonomous and independent of time
makes that this movement is equivalent to just moving with the flow starting
from the point ¢ during the total time ¢ 4 7, that is the left hand side in the
equation. The illustration is borrowed from the proof for the linear systems.
The only difference here is that we have a superposition ¢(t, ¢(7,&)) of trans-
fer mappings in the non-linear case instead of the product of transfer matrices

in the linear case (that is also a superposition for linear mappings).

Main theorem on the properties of limit sets.

The next theorem on the properties of w - limit sets collects properties of
w - limit sets valid for systems
of any dimension, in contrast with the Poincare - Bendixson theorem and

it’s generalization, that give a



description of w - limit sets only for systems in plane, or on 2-dimensional
manifolds.

Main theorem on the properties of limit sets. Theorem 4.38,
p.-143

We keep the same limitations and notations for the autonomous system as
above.

Let & € G. If the closure of the poistive semi-orbit O (£) is compact and
contained in G, then R} C I and the w - limit set Q(§) C G is

1) non-empty

2) compact

3) connected

4) invariant (both positively and negatively): for any w - limit point 1 €
Q&), I, =R, and ¢(t,n) € Q) for all t € R.

5) ¢(t,&) approaches Q(&) as t — oo:

lim dist(p(t, ), (&) = 0

Remark

The most interesting statement in the theorem is statement 4). It means
that w - limit sets consist of orbits of solutions to the system. Taking a starting
point n on the limit set (&) we get a trajectory ¢(t,n) that stays within this
set Q&) infinitely long both in the future and in the past.

A simple tool to satisfy conditions in this theorem is to find a compact
positively invariant set for the system that contains the point £. It can be
done using one of two methods discussed earlier.

Proofs of statements in the theorem are based on: general properties of
compact sets for 1) ,2), simple contradiction arguments and the definition of
the limit sets for 3) and the translation property of the transition mapping
o(t, &), together with continuity of ¢(t,§) for 4), a contradiction argument

togehter with the definition of w - limit sets.



LaSalle’s invariance principle

We formulate now the LaSalle’s invariance principle that generalizes ideas
that we discussed in the introductory example and gives a handy instrument
for localizing w - limit sets of non-linear systems in arbitrary dimension.

Theorem 5.12, p.180

Assume that f is locally Lipschitz as before and let ¢(t, &) denote the flow

generated by the corresponding system

Let U C G be non-empty and open. Let V' : U — R be continuously
differentiable and such that Vi(z) = VV - f(2) < 0. forall z € U. If £ € U
is such that the closure of the semi-orbit O () is compact and is contained
in U, then R, C I (maximal existence interval for £) and ¢(t, ) approaches
as t — oo the largest invariant set contained in Vf_l(O) that is the set where
Vi(z) = 0.

Proof.

Proof given in the solution of Exercise 5.9, on p. 312.



Exercise 5.9
Set z(-) := (-, £). By continuity of V and compactness of cl(O(£)), V is bounded on
O™ (£) and so the function V oz is bounded. Since (d/dt)(V ox))(t) = Vi(z(t)) < 0 for
all t € Ry, V oz is non-increasing. We conclude that the limit lim; ... V(z(t)) =: A
exists and is finite. Let z € (2({) be arbitrary. Then there exists a sequence (t,) in
R4 such that tn — oo and z(tn) — z as n — oo. By continuity of V| it follows that
V(z) = A. Consequently,

V(z) =X Vz € (). (%)
By invariance of 2(£), if z € £2(£), then p(t,z) € £2(§) forallt € R and so V(p(t,2z)) =
A for all t € R. Therefore, Vy(p(t,z)) =0 for all £ € R. Since ¢(0,z) = z and z is an
arbitrary point of £2(£), it follows that

Vi(2) =0 Vz € Q(), (%)

and so §2(£) C VJ,_I(D). The claim now follows because, by Theorem 4.38, (2(£) is
invariant and z(t) approaches {2(£) as t — oo.

Comment. It might be tempting to conclude from (x) that (VV')(z) = 0 for all
z € §2(£), which then immediately would yield (*#). However, this conclusion is not
correct: the set {2(£) is not open and therefore (*) does not imply that (VV')(z) = 0 for
all z € £2(¢). (The invalidity of the conclusion is illustrated by the following simple
example: if V(z) = ||z|?> and 2(¢) = {z € RY : ||z|| = 1}, then V(z) = 1 for all
z € 2(£), but (VV)(z) =2z #0 for all 2 € £2(£).)



Example.

Consider the following system of ODEs: v= .
y= —z—(1-2a%y
Show the asymptotic stability of the equilibrium point in the origin and
find it’s domain of attraction. (4p)
Solution.

We try the test function V(x,y) = 2 + 2y? that leads to cancellation of
mixed terms in the directional derivative along trajectories:

Vi(x,y) = 4oy — 4oy — 4y*(1 — 2?) = —4y?*(1 — 2?) that is not positive
for |z| < 1. Therefore the origin is a stable stationary point. Checking the
behavior of the system on the set of zeroes to Vy(x,y) inside the stripe |z| < 1
we consider (V;) ™ (0) = {(z,y) : y = 0,|x| < 1}. On this set ¢ = —z and the
only invariant set in (V)" (0) is the origin. The LaSalles invariance principle
implies that the origin is asymptotically stable and the domain of attraction
is the largest set bounded by a level set of V (z,y) = 2%+ 2y? inside the stripe
|z| < 1. The largest such set will be the interior of the ellipse z* + 2y* = C
such that is touches the lines = £1. Taking points (£1,0) we conclude that
1 = C. and the boundary of the domain of attraction is the ellipse 22 +21? = 1
with halfs of axes 1 and v/0.5 :
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