
Lecture notes on non-linear ODEs: existence, extension, limit sets, periodic

solutions.

Plan

1. Peano theorem on existence of solutions (without proof), Theorem. 4.2,

p. 102.

2. Existence and uniquness theorem by Picard and Lindelöf . Th. 4.17,

p. 118 (for continuous f(t; x), locally Lipschitz in x),

Th.4.22, p.122 (for piecewise continuous f(t; x), locally Lipschitz in x).

(Proof comes in the last week of the course)

3. Maximal solutions. Openess of the maximal existence interval. Prop.

4.4., p. 107.

4. Existence of Maximal solutions. Theorem 4.8.

5. Extensibility of bounded solutions to the boundary time point of the

interval. Lemma 4.9, p. 110.

6. Corollary 4.10, p. 111, on solutions eclosed in a compact, implying

"in�nite" maximal interval.

7. Properties of limits of maximal solutions. Theorem 4.11, p. 112 on

the property of solutions with "�nite" maximal interval Imax, to escape any

compact subset C in the space domain G.

8. On in�nite existence interval for systems with linear growth estimate

for the right hand side. Proposition 4.12, p. 114.

9. Transition map. De�nition p. 126. Transition property of the transition

map. Translation property for autonomous systems.

Theorem 4.26, p. 126. (similar to Chapman - Kolmogorov relations for

transition matrix)

10. Openness of the domain and smoothness of transition map.Theorem

4.29, p. 129. (only idea of the proof is discussed)

11. Autonomous systems. Flows and continuous dependence. §4.6.1.

Example 4.33., p. 139.
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12. Semi- orbits. Limit sets. p. 142. Positively (negatively) invariant sets

p. 142.

13. Properties of ! - limit sets. Theorem 4.38, p. 143

14. Existence of an equilibrium point in a compact positively invariant

set. Theorem 4.45, p. 150.

15. Planar systems. Periodic orbits. Poincare-Bendixson theorem. (only

idea of the proof is discussed) Theorem 4.46, p. 151.

16. Bendixson�s criterion on non existence of periodic solutions.(after lec-

ture notes)

17. First integrals and periodic orbits. Limit cycles. §4.7.2
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0.1 Non-linear systems. Existence and uniqueness of solutions.

Second half of the course deals with initial value problems for non-linear systems of ODE�s,

non-autonomous:

x0(t) = f(t; x); f : J �G! Rn; x(�) = � (1)

with J � R - an interval, G � Rn, open, � 2 J , � 2 G; f - continuous in J � G, and

autonomous systems of ODE�s:

x0(t) = f(x); f : G! Rn; x(�) = � (2)

that are a particular case of (1) with G � Rn, open, � 2 J = R, � 2 G, f - continuous in G;

where the right hand side f in the equation is independent of the time variable t running

over the whole R. The practical meaning of this kind of systems is that the "velocity" f

of the system depends only on the position x, but not on time t. So independently of the

starting time � the output x(t) of an evolution depends only on the shift in time t � � . It

lets to choose always � = 0 for autonomous systems.

In many situations the equivalent integral form of I.V.P. is convenient to use:

x0(t) = � +

Z t

�

f(s; x(s))ds (3)

Another option of requirements to f that is considered in the book by Logemann Ryan

is that f is supposed to be piecewise continuous in t and locally Lipschitz with respect to

x. We will not consider this case systematically in this part of the course.

The fundamental question of existence of solutions is answered by the following Peano

theorem (with possibility of non-uniqueness of solutions)

Theorem 4.2, p. 102. Peano theorem.

For each (� ; �) in J �G there exists a solution to (1) de�ned on a (possibly small) time

interval I � J , � 2 I.

This result implies also the solvability of the problem (2) that is just a particular case.

The proof of this theorem is based on the compactness principle, one of two main ap-

proaches in analysis to the existence of solutions to non-linear equations. We will not give a
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proof here, but will sketch main ideas behind it.

i) One of characteristic properties of compact sets in complete normed spaces is, that

any sequence of points fzng1n=1 from a compact set C always has a converging subsequence

fznkg
1
k=1 with a limit limk!1 znk = z� that belongs to C: z� 2 C.

ii) One approximates solutions to (1) by the explicit Euler method and considers a se-

quence fyn(t)g1n=1 of approximations ith the step of �nite di¤erences tending to zero with

n!1:

iii) Considering these approximations on a time interval I including � and choosing this

interval small enough (depending on the absolute value of f around (� ; �)), one can show

that the approximathions fyn(t)g1n=1 , are uniformly bounded and uniformly continuous on

I.

iv) Then basing on the property i) and on iii), one can choose a subsequence fynk(t)g
1
k=1

converging uniformly on I; to a function y(t) in the space of continuous vector valued func-

tions on I , that is a solution to (3) and therefore to (1).�
Exercise. Show that the I.V.P. x0= 3

p
x; x(0) = 0, has non-unique solutions.

The uniqueness of solutions to I.V.P. needs additional requirements on regularity of f(t; x)

with respect to x variable. The standard requirement is that f(t; x) is supposed to be locally

Lipschitz with respect to the space x variable.

We repeat here the de�nition of locally Lipschitz functions.

De�nition.(p. 115)

Let D � R�Q be a non-empty set A function g : D ! RM is said to be locally Lipschitz

if for any z 2 D there is a set U � D, realtively open in D; z 2 U; and a number L � 0

(which may depend on U) such that

kg(u)� g(w)k � L ku� wk ; 8u;w 2 U

If L is independent of the choice of U , the function is called globally Lipschitz.

Similarly one de�nes functions locally Lipschitz with respect to a part of variables.

De�nition.(p. 118)

Let G � R�n be a non-empty open set, J be an interval in R. A function f : J �G! Rn
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is said to be locally Lipschitz with respect to x 2 G if for any (� ; x) 2 J � G there is a set

S�U � J �G, realtively open in J �G and a number L � 0 (which may depend on S�U)

such that

kg(s; x)� g(�; y)k � L kx� yk ; 8(s; x); (�; y) 2 J �G

A theorem that gives conditions for both existence and uniquness of solutions to (1) is

called the Picard-Lindelöf theorem

We will prove it in the last week of the course by applying the Banach contraction

principle, that is the second main approach in analysis to existence of solutions to non-linear

equations.

Theorem. Picard-Lindelöf. Theorem 4.17, p. 118 (variant with continuous

f): Theorem 4.22, p. 122 (variant with piecewise continuous f).

Let with J � R - an interval, G � Rn, open, � 2 J , � 2 G; f be continuous in J � G.

If f is locally Lipschitz with respect to its second argument x 2 G, then there is a unique

maximal solution x : Ix ! Rn to the I.V.P. problem (1): Any other maximal solution with

the same initial conditions must coinside with x(t):

De�nition. By maximal solution we mean here the solution that cannot be extended to

a larger time interval.

A simpler version of this theorem states just that a "local" solution to (1) on a possibly

small time interval I � J ; � 2 I, exists and is unique in the sence that any two solutions

x and y must coinside on the intersection of the time intervals Ix and Iy where they are

de�ned.

Proof of local uniqueness uses the integral form of the problem and the ar-

gument with Grönvall inequality that was applied two times earlier for lineary

systems.

The same argument is used for proving well posedness of the I.V.P., namely

that solutions to initial value problem (1) considered as functions of three variables t,

� , �: x(t) = '(t; � ; �) are continuous and in fact even locally Lipschitz with respect to all

three variables t, � , �.
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0.2 Extensions, maximal solutions and their properties.

We consider in this section the problem (1) with f continuous and satisfying conditions in

the Peano theorem implying existence (but not uniqueness) of "local solutions x : I ! Rn

on an interval I � J .

De�nition. p. 106.

An extension (proper extension) of the solution x is a solution ex : eI ! Rn to (1) such

that ex(t) = x(t) 8t 2 I, I � eI, eI 6= I.
De�nition. p. 106. Maximal solution and maximal interval of existence.

The interval I is a maximal interval of existence and x is called maximal solution if x

does not have an extension to a larger interval that is a solution to (1).

Plan

� We are going to prove �rst an important property of maximal intervals (namely that

they are relatively open).

� Then we prove an existence theorem for maximal solutions, namely the fact that any

solution to (1) can be extended to a maximal solution (an extension with maximal interval

of existence). Theorem 4.8, p. 108.

� Then we consider conditions implying that the maximal interval of existence Imax is

in�nite (if J is R), or "in�nite with respect to J" meaning that the maximal solution exists

on the whole part of J to the right or to the left of the initial time � : on [� ;1) \ J or on

(�1; � ] \ J . Corollary 4.10, p. 111.

This important property is based on a technical Lemma 4.9. p. 110 that shows that a

solution x de�ned on an open interval I and having bounded orbit towards future: O+ =

fx(t) : x 2 [� ; sup I)g with closure in G can be extended up to the boundary point and to

the closed interval [� ; sup I]. Similar result is valid for the extension to the boundary point

in the "past".

� After that we consider situation opposite to the previous one and describe the behaviour

of maximal solutions that have bounded maximal interval Imax (if J is R), or in the case

when J is bounded, a maximal interval "bounded with respect to J", Imax, not reaching

boundaries of J; meaning that sup Imax < sup J or inf J < inf Imax. Theorem 4.11, p.112.
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� Then for an equation de�ned on the whole Rn, f : J � Rn ! Rn we prove that if f

grows not faster than linerarly: kf(t; z)k � L(1 + kzk) for t on any compact time interval

K, then solutions to (1) exist on [� ;1) \ J or on [� ;1) if J = R. Proposition 4.12. This

result is particularly useful because the condition is easy to check.

The condition in the Proposition 4.12 is not necessary, but simple examples show solutions

that blow up in �nite time in future or in the past if this condition is not satis�ed, as for

example the equation x0 = x2:

We suggest �rst simple examples of maximal solutions and maximal intervals that can

be calculated explicitely.

Exercise 4.6

J = [�1; 1]; G = R; f : J �G! R:

(� ; �) = (0; 1)

f(t; z) =
3z2
p
1� jtj
2

t 2 [0; 1]

dz

dt
=

3z2
p
1� t
2

dz

z2
=

3
p
1� t
2

dt

�1
z

= � (1� t)3=2 + C

�1 = �1 + C; (� ; �) = (0; 1)

C = 0

z =
1

(1� t)3=2
; t 2 [0; 1)

t 2 [�1; 0];

dz

dt
=
3z2
p
1 + t

2

7



dz

z2
=

3
p
1 + t

2
dt

�1
z

= (1 + t)3=2 + C

�1 = 1 + C; (� ; �) = (0; 1)

C = �2
�1
z

= (1 + t)3=2 � 2

z =
1

2� (1 + t)3=2
; t 2 [�1; 0];

The maximal interval Imax = [�1; 1) - is relatively open in [�1; 1]
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Exercise 4.7

J = (�1; 1); G = (�1; 1):

f(t; z) =
1p

(1� t) (1� z)

dz

dt
=

1p
(1� t) (1� z)Z p

1� zdz =

Z
dtp
(1� t)

2

3
(z � 1)

�p
1� z

�
= �2

p
1� t+ C

2

3
(�1) (1) = �2 + C; t = 0; z = 0

4=3 = 2� 2=3 = C
2

3
(z � 1)

�p
1� z

�
= �2

p
1� t+ 4

3
2

3
(1� z)

�p
1� z

�
= 2

p
1� t� 4

3

(1� z)
�p
1� z

�
= 3

p
1� t� 2

(1� z)3=2 = 3
p
1� t� 2

(1� z) =
�
3
p
1� t� 2

�3=2
z = 1�

�
3
p
1� t� 2

�3=2

lim
t!5=9

x(t) = 1

Imax = (�1; 5=9)

Imax is open.

9



Theorems 4.17 and 4.22 imply that for any point � ; � 2 J �G there is a unique maximal

solution that is convenient to consider as a function '(t; � ; �) : J � J � G ! G of three

variables equal to the maximal solution x of (1). It is a common situation in applications

that one is interested not in properties of one solution, but in a description of the family

of solutions with all possible initial data as a whole. This type of problems constitute

modern theory of di¤erential equations and dynamical systems and motivates introducing

the following notion.

De�nition. p. 126. Transition map. The mapping '(t; � ; �) de�ned above is called

transition map.

In the case of autonomous systems there is no meaning in considering di¤erent initial

times � , because all solutions are functions of the time shift t� � . In this case we consider

ransition mappings '(t; �) : J � G ! G with '(t; �) = x(t) being the maximal solution of

(2) with initial condition x(0) = �.

Example 4.33.

G = R; f : G! R; f(x) = x2; � = 0; x(t) � 0:

dx

dt
= x2;

Z
dx

x2
=

Z
dt;

�1
x
= t+ C

�1
x
= t� 1

�
; �1

x
=
t� � 1
�

x =
�

(1� t�)

� = 0; x(t) � 0: � > 0, I� = (�1; 1=�): � < 0, I� = (1=�;1)

'(t; �) =
�

(1� t�) ; D(') = f(t; �) 2 R� R; t� < 1g

The domain D of ' is an open set. '(t; �) is continuous and even locally Lipschitz:
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To make it easier to remember the meaning of theorems, in the case they do not have a

historical names, we will supply them with meaningfull names, sometimes funny.

Proposition 4.4. Openness of maximal intervals.

Let x : I ! G be a maximal solution to I.V.P. (1):The maximal interval I is relatively

open in J (just open if J = R).

It means that I = J \O for some open set O � R.

Theorem 4.8. p. 108. Existence of maximal solutions.

Every solution to (1) can be extended to a maximal solution.

Proof.

In the case when solutions are unique (for example f is locally Lipschitz with respect

to x); one can build the maximal interval of existence just by as a union of domains for all

extensions of a given solution. Because of the uniqueness of solutions, trajectories cannot

make branches in this case and this construction leads to a unique maximal solution that at

each time point t attains the value of one of the extensions de�ned at this time point. The

uniqueness of solutions makes that this de�nition is consistent.

In the general case when trajectories can create branches, the union of extensions can

have a tree like geometry, or even be an n-dimensional set. In this case the proof uses Zorn

lemma to choose a maximal solution. It has an existence interval including all existence

intervals of all extensions, but is possibly not unique.
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The following technical lemma is the main tool in several arguments about maximal

solutions.

Lemma 4.9. On extension of a bounded solution with closure in G to the

boundary point of the open existence time interval.

Let x : I ! G be a solution to (1) and denote a = inf I; b = sup I.

(1) If b is in J and not in I (I is open in the right end, the closure of the orbit O+ =

fx(t) : t 2 [� ; b)g is a bounded (therefore compact) subset of G, then there is a solution

y : I [ fbg ! G to (1) that is extension of x.

(2) a similar statement is valid for the "backward orbit" O� = fx(t) : t 2 (a; � ]g and

extension of x to the left end point a.

Proof.

The following Corollary is a direct consequence of the Lemma 4.9 and Proposition 4.4

and gives a su¢ cient condition for a maximal solution to have an in�nite maximal interval

(if J is in�nite) or a maximal interval "i�nite with respect to" J , which meaning is speci�ed

exactly below.

Corollary 4.10, p. 111. "Eternal life" of solutions enclosed in a compact.

If the "future" half - orbit O+ = fx(t) : t 2 Imax \ [� ;1)g of the maximal solution x(t)

is contained in a compact subset of G, then the corresponding maximal interval of existence

Imax is in�nite to the right (future) if [� ;1) � J ), or "in�nite to the right with respect to

J" meaning that the maximal solution exists on [� ;1) \ I = [� ;1) \ J that is the whole

part of J to the right of the initial time � .

Similar statement is valid for the "backward orbit" O� = fx(t) : t 2 (a; � ]g. If it is

contained in a compact subset of G, then the corresponding maximal interval of existence

Imax is in�nite to the left (past) if (�1; � ] � J and is in�nite to the left (past) "with respect

to" J , that means that the maximal solution exists on (�1; � ] \ I = (�1; � ] \ J , that is

the whole part of J to the left of the initial time � .

If the whole orbit O = fx(t) : t 2 Imaxg of the maximal solution x(t) is contained in

a compact subset of G, then the corresponding maximal interval of existence Imax = J

(Imax = R if J = R). It means that the maximal solution x exists both in the whole past
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and whole future for the equation.

Proof. The proof is easy to carry out by a contradiction argument that follows from the

Lemma 4.9 and the fact that a maximal interval must be open (relatively to J).

The following Theorem describes the situation in a sense opposite to the previous Corol-

lary 4.10. It describes the the behaviour of maximal solutions having bounded maximal

interval Imax (if J is R), and in the case when the interval J has bounded endpoints it-

self, describes maximal solution with maximal interval that is "bounded with respect to J",

meaning that sup Imax < sup J or inf J < inf Imax.

Theorem 4.11, p.112. "Short living" maximal solutions escape any compact.

Let x : I ! G be a maximal solution to (1) with maximal interval of existence I � J

and assume that I 6= J . Denote � = inf I and ! = sup I, both do not belong to I that must

be open. Then either ! 2 JnI or � 2 JnI .

1) In the �rst case ! 2 JnI for each compact C � G, there is an "escaping time moment"

� 2 I; � < !, such that x(t) escapes C at time � : x(t) =2 C for all t 2 (�; !).

This property can be further geometrically speci�ed. If G 6= Rn the trajectory x(t) tends

to the boundary @G with t! ! (if G is bounded) it can also tend in�nity if G has "branches"

going to in�nity in Rn. If G = Rn, then kx(t)k ! 1; as t! !.

lim
t!!

min fdist(x(t); @G); 1= kx(t)kg = 0; for G 6= Rn (4)

kx(t)k ! 1; as t! !; for G = Rn

2) Similar statements are valid for the limits of x(t) as t ! � for the maximal solution

having maximal interval with the left end point "in the past" � belonging to J .

Proof.

We consider the case 1). The fact that the maximal solution must escape any compact

C follows from the previous Corollary 4.10 by contradiction, because a solution that stays in

a compact must have a maximal interval in�nite to the right or [� ;1) \ I = [� ;1) \ J . It

contradicts to the condition that ! 2 JnI that means that the given maximal x(t) solution

does not reach the maximal possible time in J .

A more so�sticated argument (missed in the course book) shows that there is a "last

13



visit" time � < !, such that x(t) never enters C again after this time.

If G is bounded, one can choose a rising sequence of test compact sets fCng1n=1 ; Cn �

Cn+1 � G like "blowing up ballons" tending to the boundary @G of G so that dist(Cn; @G)!

0 as n ! 1 . For each of these sets there is a time �n such that x(t) leaves Cn and

therefore has dist(x(t); @G) < dist(Cn; @G) for t > �n. This construction proves the fact

that dist(x(t); @G)! 0 as t! !.

In the case of G = Rn one can choose a sequence of test compact sets fCng1n=1 as balls

with centers in the origin and radii rn tending to in�nity with n!1 leading together with

the "escaping property" to conclusion that kx(t)k ! 1; as t! !.

The third case with unbounded G with non-empty boundary @G can be proven by a

combination of the above arguments.�

0.3
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