
1 Banach�s contraction principle. Picard-Lindelöf

theorem.

We consider in this chapter the theorem by Picard and Lindelöf about exis-

tence and uniqueness of solutions to the initial value problem to the system

of di¤erential equations in the form

x0(t) = f (t; x(t)) (1)

x(�) = � (2)

Here f : J �G! Rn is a vector valued function continuous with respect
to time variable t and space variable x. J is an interval; G is an open subset

of Rn.
One can reformulate the I.V.P. (1),(2) in the form of the integral equation

x(t) = � +

Z t

�

f (s; x(s)) ds (3)

If f is continuous, then these two formulations are equivalent by the

Newton-Leibnitz theorem.

Fixed points of operators.
Consider a vector space X with a subset C � X and an operator K :

C ! C:

De�nition
A point x 2 C is called the �xed point of the operator K if

K(x) = x (4)

A general idea behind the analysis of many types of equations is to formulate
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them as a �xed point problem.

Consider the right hand side of the integral equation (3) as an operator

K(x)(t)
def
= � +

Z t

�

f (s; x(s)) ds

acting from the vector space of continuous functions C(I); where I � J is a
closed interval including � .

The expression kxkC(I) = supt2I kx(t)k de�nes a norm on the space C(I)

because it satis�es the triangle inequality and we know that uniformly con-

vergent sequences of continuous functions on the compact converge to con-

tinuous functions. This space is even complete in the sense that Cauchy

sequences of functions in C(I) converge uniformly to continuous functions.

It means that if the sequence fxng 2 C(I) has the Cauchy property

kxm � xnkC(I) = sup
t2I
kxm(t)� xn(t)kC(I) !

m;n!1
0

then there is a continuous function x 2 C(I) such that xn !
n!1

x uniformly

on I, or that is the same, kxn � xkC(I) !n!1 0:
We call a normed vector space a Banach space if it is complete with

respect to it�s norm. So the space C(I) is a Banach space.

Remark.
We point out for convenience that di¤erent norms are used through out

the text. Notation kk means usual euclidean norm in Rn: For a Banach space
X the notation kxkX means the norm in the space X:

The operator K de�ned above, acts from C(I) to itself. It makes that

the I.V.P. above can be considered as a �xed value problem (4) on C(I) or
on some subset of it.

A classical theorem that guarantees the existence and uniqueness of �xed

points to operators in Banach and more generally in metric spaces, is Ba-

nach�s contraction principle.
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De�nition. Operator K : A ! A; where A � X; and X is a Banach

space, is called contraction on A if there is a constant 0 < � < 1 such that

for any x; y 2 A

kK(x)�K(y)kX � � kx� ykX

Banach�s contraction principle.
Let A be a non-empty closed subset of a Banach space X and K : A! A

be a contraction operator with contraction constant �:Then there is a unique

�xed point x 2 A; to K such that Kx = x such that

kKn(x0)� xkX �
�n

1� � kK(x0)� xkX

for arbitrary x0 2 A. Here Kn(x0) = K(K(:::K(x0)):::) is the operator

K applied to itself n times.

Proof (not required at the exam) is based on showing that sequential

approximations xn de�ned by the equations

x1 = K(x0)

xn+1 = K(xn)

with an arbitrary initial approximation x0 2 A, converge to some x 2 A
that is the unique �xed point of K in A.

Picard-Lindelöf theorem.
Here f : J �G! Rn is a vector valued function continuous in J �G: J

is an interval; G is an open subset of Rn. Let in addition suppose that f is
Lipschitz continuous with respect to the second argument with the Lipschitz

constant L > 0:

kf(t; x)� f(t; y)k � L kx� yk ;8x; y 2 G

(We could suppose a weaker condition that this Lispchitz property is only
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local, but will not do it because it would make the proof just slightly longer

without changing main ideas).

Then for any (� ; �) 2 J �G the initial value problem

x0 = f(x; t)

x(�) = �

has a unique solution on some time interval including � . �
Remark. This local solution can always be extended to a unique maxi-

mal solution. We considered maximal extensions earlier in the course.

Proof to the Picard-Lindelöf theorem.
The proof is based on using the integral form of the I.V.P.

x(t) = � +

Z t

�

f (s; x(s)) ds

and applying Banachs contraction principle to it. We use the Banach space

of continuous functions x : I ! Rnon some compact interval I.
The application of Banach�s principle here consists of two steps. One is

to �nd a time interval I1 and a subset A � C(I1) such that the operator K
maps A to itself: K : A! A:

Another one is to �nd a time interval I2 such that the contractness prop-

erty for the operator

K(x)(t) = � +

Z t

�

f (s; x(s)) ds

would be valid on a subset of C(I2): Finally we will choose the smallest of I1
and I2 for both properties to be valid and will conclude the result.

We consider here the case when an interval [� ; � + T ] 2 J ; T > 0 and

try to �nd a solution on this time interval (or possibly on a shorter time

interval [� ; � + �] with � < T ). Considering a time interval backwords in

time is similar. Choose a closed ball B(�; �) = fx : kx� �k � �g such that
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B(�; �) 2 G.
The function f(t; x) is continuous on the compact set V = [� ; � + T ]�

B(�; �) in Rn+1and therefore

M = sup
(t;x)2V

kf(t; x)k <1

We are going to estimate kK(x)(t)� �k and choose the length T of the
time interval [� ; � + T ] in such a way that for any x(t) 2 B(�; �) for t 2
[� ; � + T ], it follows that kK(x(t))� �k � � for t 2 [� ; � + T ].
It would imply that supt2[�;�+T ] kK(x)(t)� �k = kK(x)� �kC([�;�+T ]) � �

for kx� �kC([�;�+T ]) � �. We start with proving the �rst inequality:

kK (x) (t)� �k =




Z t

�

f (s; x(s)) ds





 � Z t

�

kf (s; x(s))k ds � TM

We observe that choosing T < �=M we get that kK (x) (t)� �k � � for
t 2 [� ; � + T ] and taking supremum of the left hand side over t 2 [� ; � + T ]
arrive to

kK(x)� �kC([�;�+T ]) � �

It means that the operator K maps the closed ball A in C([� ; �+T ]) with

T < �=M; de�ned by the inequality kx� �kC([�;�+T ]) � � into itself:

K : A! A

Now we check conditions (again the length of the time interval) such

that the operator K would be contraction on the set A with a suitably

adjusted time interval T . Consider �rst the di¤erence kK (x) (t)�K (y) (t)k,
for t 2 [� ; � + T ]; apply the triangle inequality, the Lipschitz property of the
function f , and estimate the integral by the length of the interval times

maximum of the function under it.
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kK (x) (t)�K (y) (t)k =





Z t

�

f (s; x(s))� f (s; y(s)) ds




 �Z t

�

kf (s; x(s))� f (s; y(s))k ds � L

Z t

�

kx(s)� y(s)k ds �

LT sup
t2[�;�+T ]

kx(s)� y(s)k ds = LT kx� ykC([�;�+T ])

Calculating supremum over t 2 [� ; � + T ] of the left hand side we arrive
to the inequality

kK (x)�K (y)kC([�;�+T ]) � LT kx� ykC([�;�+T ])

It implies that choosing T < 1=L we get the contraction property.

kK (x)�K (y)kC([�;�+T ]) � � kx� ykC([�;�+T ]) ; 0 < � < 1

Now choosing the time interval T < min(1=L, �=M) we conclude that the

operator K maps the closed ball A in C([� ; � + T ]) de�ned by

A =
n
x 2 C([� ; � + T ]), kx� �kC([�;�+T ]) � �

o
into itself: K : A! A and thatK is a contraction onA: kK (x)�K (y)kC([�;�+T ]) �
� kx� ykC([�;�+T ]), � < 1, for any x; y 2 A:
By the Banach contraction principle K has for T < min(1=L, �=M) a

unique �xed point x in A that is the solution to the integral equation (3) and

to the original initial value problem.�

Exercise.
Consider the following (nonlinear!) operator

K(x)(t) =

Z 2

0

B(t; s) [x(s)]2 ds+ g(t);
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acting on the Banach space C([0; 2]) of continuous functions with norm

kxkC([0;2]) = kxkC = sup
t2[0;2]

jx(t)j. Here B(t; s) and g(t) are continuous func-

tions and jB(t; s)j < 0:5 for all t; s 2 [0; 2] : Estimate the norm kK(x)�K(y)kC([0;2])
for the operator K(x)(t): Find requirements on the function g(t) such that

Banach�s contraction principle implies that K(x)(t) has a �xed point.

Solution.
Banach�s contraction principle. Let B be a nonempty closed subset of a

Banach spaceX and let the non-linear operatorK : B ! B be a contraction:

kK(x)�K(y)kX � � kx� ykX ; � < 1

Then K has a �xed point x = K(x) such that

kKn(x0)� xkX �
�n

1� �

for any x0 2 B. Here Kn(x0) = (K(K(:::K(x0):::)) is the n -fold super-

position of the operator K with itself.

We like to have the estimate kK(x)�K(y)k � � kx� yk for x; y in some
closed subset B of C([0; 2]).

jK(x)�K(y)j �
���R 20 jB(t; s)j ��[x(s)]2 � [y(s)]2�� ds���

=
���R 20 jB(t; s)j jx(s)� y(s)j jx(s) + y(s)j ds���

taking sup
t;s2[0;2]

�R 2
0
ds sup
t;s2[0;2]

jB(t; s)j sup
s2[0;2]

jx(s)� y(sj)
 
sup
s2[0;2]

jx(s)j+ sup
s2[0;2]

jy(s)j
!
=

2 � 0:5 kx� ykC (kxkC + kykC) = kx� ykC (kxkC + kykC)
We can choose a ball B � C([0; 2]) such that for any x, y 2 B it follows

kxkC + kykC � � < 1; for example B can be taken as a set of functions with
kxkC � �=2. On this set K will be a contraction because kK(x)�K(y)kC �
� kx� ykC ; � < 1:
To apply Banach�s principle we need also that K maps B into itsel·f,

namely that kK(x)kC � �=2 for kxkC < �=2.
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It gives a requirement on function g(t). Estimate the operator K :

kK(x)kC � sup
t2[0;2]

���R 20 B(t; s) �[x(s)]2� ds���+ sup
t2[0;2]

jg(t)j � kxk2C + kgkC
If kxkC < �=2 then we like to have that kK(x)kC � �=2 that follows if

kK(x)kC � �
2=4 + kgkC � �=2

It is satis�ed if kgkC � �=2� �
2=4 = �=2(1� �=2). Therefore for kgkC �

�=2(1� �=2) the operator K has a unique �xed point in the ball B : kxkC �
�=2.
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