1 Bendixson's citerium for nonexistence of periodic solutions in plane.

Theorem. Let $x^{\prime}=f(x)$ with $f: G \rightarrow \mathbb{R}^{2}, G \subset \mathbb{R}^{2}$ be open and let $D \subset G$ be a simply connected domain (domain without "holes" even point holes). f is locally Lipschitz in G.

Suppose that $\operatorname{div}(f)=\frac{\partial f_{1}}{\partial x_{1}}+\frac{\partial f_{2}}{\partial x_{2}}$ is strictly positive (or strictly negative) in D, where $f=\left[f_{1}, f_{2}\right]^{T}$.

Then the equation has no periodic solutions with orbits inside D.
Proof 1. Carry out a proof by contradiction. Suppose that there is a periodic trajectory $x(t)$ with period T in $D . x(t+T)=x(t)$ and

$$
x_{1}^{\prime}(t)=f_{1}(x(t)), \quad x_{2}^{\prime}(t)=f_{2}(x(t))
$$

Denote the orbit of $x(t)$ by $\mathcal{L}=\{x(t): \quad t \in[0, T]\}$. Denote the domain inside \mathcal{L} by Ω. Then the boundary $\partial \Omega=\mathcal{L}$ because $D \supset \Omega$ is simply connected and has no holes. Consider the integral of $\operatorname{div}(f)$ over Ω and apply Gauss theorem:

$$
I=\int_{\Omega} \operatorname{div}(f) d x_{1} d x_{2}=\int_{\partial \Omega} f \cdot n d l
$$

where n is the outward normal to the boundary $\partial \Omega$. Point out that $f(x(t))=$ $x^{\prime}(t)$ on $\partial \Omega=\mathcal{L}$ because \mathcal{L} is the orbit of the periodic solution $x(t)$ that we supposed to be existing. Therefore $f(x(t))$ is the tangent vector to $\partial \Omega$ and therefore scalar product of it woth the normal vector is zero $f \cdot n=0$. Therefore

$$
I=\iint_{\Omega} \operatorname{div}(f) d x_{1} d x_{2}=\int_{\partial \Omega} f \cdot n d l=0
$$

with the curve integral over $\partial \Omega=\mathcal{L}$ in the right hand side. On the other hand $\operatorname{div}(f)>0$ (or strictly negative) in the whole $D \supset \Omega$. Therefore the integral $I=\int_{\Omega} \operatorname{div}(f) d x_{1} d x_{2}$ over a bounded domain Ω must be strictly positive (negative).We arrived to contradiction: $0>0$. Therefore our supposition was wrong and the system cannot have a periodic orbit in D

Proof 2. starts similarly with the supposition that there is a periodic
trajectory $x(t)$ with period T in $D, x(t+T)=x(t)$ and

$$
x_{1}^{\prime}(t)=f_{1}(x(t)), \quad x_{2}^{\prime}(t)=f_{2}(x(t))
$$

Denote the orbit of $x(t)$: by $\mathcal{L}=\{x(t): \quad t \in[0, T]\}$. Denote the domain inside \mathcal{L} by Ω. Then the boundary $\partial \Omega=\mathcal{L}$ because $D \supset \Omega$ is simply connected and has no holes.

We apply the Greens formula:

$$
\oint_{\partial \Omega} P d x_{1}+Q d x_{2}=\iint_{\Omega}\left(\frac{\partial Q}{\partial x_{1}}-\frac{\partial P}{\partial x_{2}}\right) d x_{1} d x_{2}
$$

instead of Gauss theorem.
Choose $P=-f_{2}, Q=f_{1}$ and express the contour integral in the left side of the Greens formula using the definition of the contour integral:

$$
\oint_{\partial \Omega} f_{1} d x_{2}-f_{2} d x_{1}=\int_{0}^{T}\left(f_{1} x_{2}^{\prime}-f_{2} x_{1}^{\prime}\right) d t
$$

Point out that $x_{1}^{\prime}(t)=f_{1}(x(t))$ and $x_{2}^{\prime}(t)=f_{2}(x(t))$ and substitute these expressions into the integral:

$$
\oint_{\partial \Omega} f_{1} d x_{2}-f_{2} d x_{1}=\int_{0}^{T}\left(f_{1} f_{2}-f_{2} f_{1}\right) d t=0
$$

Apply the Greens formula substitute expressions for P and Q, and conclude that in the case $\left(\frac{\partial f_{1}}{\partial x_{1}}+\frac{\partial f_{2}}{\partial x_{2}}\right)=\operatorname{div}(f)>0$:

$$
0=\oint_{\partial \Omega} f_{1} d x_{2}-f_{2} d x_{1}=\iint_{\Omega}\left(\frac{\partial f_{1}}{\partial x_{1}}+\frac{\partial f_{2}}{\partial x_{2}}\right) d x_{1} d x_{2}>0
$$

that is contradiction: $0>0$. In the case if $\operatorname{div}(f)<0$ in D we arrive to the contradiction <0.

1. Example.

Show that the following system of ODE has no periodic solutions.

1. $\left\{\begin{array}{l}x^{\prime}=x^{3}-y^{2} x+x \\ y^{\prime}=-0.5 y+y^{3}+x^{4} y\end{array}\right.$

We consider divergence of the right hand side of the system.

$$
\operatorname{div}(f)=3 x^{2}-y^{2}+1-0.5+3 y^{2}+x^{4}=x^{4}+3 x^{2}+2 y^{2}+0.5>0
$$

Therefore divergence of the right hand side of the equation is positive everywhere in the plane that is a simply connected set (does not have holes, even point-holes). According to Bendixson's criterion the system cannot have periodic solutions anywhere in the plane.

Example.

Show that the following system of ODE has no periodic solutions.

1. $\left\{\begin{array}{l}x^{\prime}=\frac{1}{7}+x^{2}-y x+y^{2} \\ y^{\prime}=-\frac{1}{5}-y^{2}\end{array}\right.$

Solution

y^{\prime} is always strictly negative. It implies that $y(t)$ must be monotone function of time. It contradicts to possibility of having periodic solutions that are always bounded.

