
List of notions, methods, theorems and typical problems to examination in ODE and Mathematical 
Modeling MMG511/TMV162, year 2019. 

(will be slightly updated with examples and references during the course) 

References are given to pages in the course book by Logemann and Ryan. 

           One must know:  

• definitions to all notions, 
•  all formulations of the theorems from the list,  
• must be able to prove theorems marked by green (or grey in black-white version), 
• must be able to solve problems of the types mentioned in the list and to make conclusions from the theory. 

Topics, definitions and notions Methods, theorems, lemmas and 
corollaries 

Typical problems  

Preliminary notions form linear algebra and analysis 
Vector space, normed vector space, norm of a matrix. 
Cauchy sequence. Complete vector space (Banach space) 
Compact sets i 𝑅𝑅𝑛𝑛. Continuous functions.  
Uniform convergence in the space of continuous functions. 

Background results from analysis 
• Space C(I) of continuous functions on a 
compact I is a Banach space Example A.14, 
p. 272 
• Bolzano-Weierstrass theorem. Theorem 
A.16, p. 273 
Weierstrass criterion on uniform 
convergence of functional series. Corollary 
A23 ,p. 277 
 

 

Introduction 1.2 
Initial value problem (I.V.P.), p.13  
existence, uniqueness,  
Maximal solution. p. 13 
Integral form of I.V.P. pp.16-17  
Classification of ODEs: order, autonomous, non -
autonomous, linear, non-linear 

Elementary Examples 1.1-1.2, pp. 13-14 on 
existence, uniqueness, maximal existence 
time for solutions showing a blow up, global 
solutions p.15  
Elementary solution methods for 1-
dimensional ODEs of first order:  
linear ODEs pp.18-19, Ex. 1.5 
ODEs with separable variables p. 15, Ex. 1.3 
 

Solve an ODE with 
separate variables or a 
linear ODE of first order. 
Find maximal existence 
time interval for an 
explicit solution.  

   

LINEAR SYSTEMS 

Topics, definitions and notions Methods, theorems, lemmas and corollaries Typical problems  
Preliminary notions form linear 
algebra 
Vector space, normed vector space, 
norm of a matrix. 
 
General linear systems §2.1 
x’=A(t)x 
 
Transition matrix function  Φ(t,τ) 
 §2.1.1 

Solution space, p.30. 
Fundamental system and fundamental 
matrix solution. Def.  p.32  
Wronskian 
 

A background result from analysis 
Weierstrass criterion on uniform convergence of 
functional series. Corollary A23 ,p. 277 
Transition matrix function and fundamental matrix 
solutions and their properties.  
• The construction of transition matrix function Φ(t, τ). 
Lemma 2.1, p.24 
• Gronwall’s inequality, Lemma 2.4, p. 27 
• A simple version of Gronwall’s inequality, after 
lecture notes.  More difficult one is Lemma 2.4 , p. 27 
in the course book. 
 
Uniqueness of solutions to I.V.P. of linear ODE. Th. 2.5, 
p.28 (we used only a simple version of Grönwall 
inequality on lectures, with constant under the integral 
by taking max of ‖𝐴𝐴(𝑠𝑠)‖ under the integral. 
 We used the same argument  for autonomous ODE 
that was studied in lectures earlier, that is Corollary 
2.9, p.34, in the book. 
• Group properties of transition matrix function. 
Corollary 2.6, p.29 
• On the dimension of the space of solutions to a 
linear system of ODEs. Prop. 2.7 statements (1) and 
(3), p.30. 
 

• Fundamental matrix for linear homogeneous ODE and 
its connection with transition matrix function Prop. 2.8, 
p. 33 

• Variation of constant (Duhamel’s) formula             

𝑥𝑥(𝑡𝑡) = Φ(𝑡𝑡, 𝜏𝜏)𝜉𝜉 + ∫ Φ(𝑡𝑡,𝜎𝜎)𝑏𝑏(𝜎𝜎)𝑑𝑑𝜎𝜎𝑡𝑡
𝜏𝜏  

Form. 2.27, Th. 2.15, p.41-  for general non-
homogeneous linear ODE. 

Find principle matrix solution for a simple system of 
ODE that can be solved explicitly (for example with 
triangular matrix) 
 



§2.1.3 Linear system of ODE with 
constant matrix (autonomous systems) 
x’=Ax 
Matrix norm, formula A.10, A.11, p. 278  
Linear change of variables in ODE. 
Matrices  𝐵𝐵 = 𝑃𝑃−1𝐴𝐴𝑃𝑃 and A are called 
similar 
Polynom  P(A), exponent exp(A) and 
logarithm log(A) of a matrix A. 
Arbitrary functions of matrices 
 
Diagonalizable matrices,  
Block diagonal matrices.   
Algebraic and geometric multiplicity of 
eigenvalues pp. 268-269 
Generalized eigenspaces and 
generalized eigenvectors p. 267 
Chains of eigenvectors (see lecture 
notes) 
Jordan canonical form of matrix J , p. 
268 
Jordan block:  p. 268 
Jordan canonical form of a matrix. 
Transformation leading to the Jordan 
canonical form J of matrices:  
T^(-1)AT=J, A=TJT^(-1).  
 

Preliminary properties of block matrices and similar 
matrices.                                                                                   
• Polynomial of block diagonal matrices.                          

• Determinant and eigenvalues of block triangular 
matrices.                                                                                  
• For two similar matrices A and 𝐽𝐽 = 𝑇𝑇−1𝐴𝐴𝑇𝑇 
determinant, characteristic polynomial, eigenvalues, 
and trace Tr(A) are the same.  

•  Property of matrix norm:||AB||<=||A||||B||,   
A.12,  p. 279                                                                            
• Properties of exp(A), Lemma 2.10, without (2) p.34, in 

particular: for two commuting matrices: AB=BA it 
follows that exp(A+B)=exp(A)exp(B)                                   
• Functions of two similar matrices A ans B are 

expressed explicitly by each other for example: for 
B=TAT^(-1); exp(B)=Texp(A)T^(-1), see p. 62 - in the 
proofs to Th, 2.19 and 2.29, pp. 60 and 62, 

•  The solution for linear systems of ODE with constant 
matrix and initial condition 𝑥𝑥(𝜏𝜏) = 𝜉𝜉 is: 
 𝑥𝑥(𝑡𝑡) = exp ((𝑡𝑡 − 𝜏𝜏)𝐴𝐴𝜉𝜉. 
• A simple version of Gronwall’s inequality with 
constant coefficient under the integral, and uniqueness 
of solutions to I.V.P. for linear autonomous ODE. 
Corollary 2.9, p. 34. We use a similar proof for the Th. 
2.5, p. 28. in lecture notes  
• Theorem A.8, p.268 on generalized eigenspaces and 
basis of eigenvectors and generalized eigenvectors. 
•  Method to find a basis of generalized eigenvectors. 
• Theorem A.9, p.268 on Jordan canonical form of a 
matrix. 
• Connection J=T^(-1)AT between a matrix A and its 
Jordan canonical form J in terms of eigenvectors and 
generalized eigenvectors to A. See lecture notes. 
• Number of blocks in the Jordan form of matrix is 
equal to the number of linearly independent 
eigenvectors. 
• Structure of the general solution to linear ODE with 
constant coefficients: Theorem 2.11, p.35  
• Function of a Jordan block: formula. (2.47), p.61, - 
two important particular cases are: the f(J)=exp(J) and 
f(J)=log(J); exponential function and for logarithm – see 
lecture notes. 
• Theorem 2.12 and Corollary 2.13, p. 36 on stability 
and asymptotic stability of solutions to linear 
autonomous systems of ODEs. One must be able to 
prove that conditions in the theorem are sufficient.  
The proof to Corollary 2.13 is the same as one to the 
Theorem 2.12, but a bit simpler because of the more 
transparent formulation of the Corollary. Alternative 
proof is available in lecture notes. 
• Classification of phase portraits in plane for linear 
systems with constant matrix, see the link on the 
homepage and lecture notes.  
• Variation of constant (Duhamel’s) formula in 
Corollary 2.17, p.43 for non - homogeneous linear 
systems with constant matrix 
 

Typical problems for linear autonomous systems  
  Find general solution or solve I.V.P. for a linear 
autonomous system of ODE with constant matrix in 
case when eigenvalues are given or are easy to 
calculate (use Theorem 2.11, p.35   
and hints in the exercises on the homepage)  
  Solve a non - homogeneous linear system of ODEs  

𝑥𝑥′(𝑡𝑡) = 𝐴𝐴𝑥𝑥 + 𝑏𝑏(𝑡𝑡) 
using Duhamel’s formula in Corollary 2.17 p.43   

𝑥𝑥(𝑡𝑡) = 𝑒𝑒𝐴𝐴(𝑡𝑡−𝜏𝜏)𝑥𝑥(𝜏𝜏) + � 𝑒𝑒𝐴𝐴(𝑡𝑡−𝜎𝜎) 𝑏𝑏(𝜎𝜎)𝑑𝑑𝜎𝜎
𝑡𝑡

𝜏𝜏
 

  Decide if a vector valued function can be solution to 
a linear system of ODEs just by checking it´s 
structure. 
Find a basis of generalized eigenvectors to a matrix.   
Use Theorem 2.11 to find if all solutions to a 
particular linear autonomous systems that are 
bounded or tend to zero with t going to plus infinity. 
  Use general solution to a linear autonomous system 
to find for which initial data solutions are bounded 
or tend to zero with t going to plus infinity. 
  Compute exponent of a 2x2 matrix  or a block 
diagonal matrix with eigenvalues that are easy to 
guess.      
Compute exponent of an arbitrary Jordan matrix. 
 Consider a 2- dimensional linear system in plane: 
classify and draw a sketch of phase portrait. 
 

Linear systems with periodic 
coefficients.  
Logarithm and principal value of 
logarithm for complex numbers. 
log(z)=log(|z|)+iArg(z) 
(meaning natural logarithm here)  
Logarithm and principal logarithm of a 
matrix. p. 52 
Monodromy matrix - the notion is not 
used in the book, but is introduced 
without this name as Φ(p,0) value of 
the transition matrix Φ(t, τ) in Floquet 
theory for linear systems with periodic 
matrix A(t+p)=A(t). 

• Fundamental matrix of periodic linear system with 
period p is p- shift invariant:  Formulas 2.31, 2.32, p.45 
• Proposition 2.20 on existence of periodic solutions to 
a periodic linear system 
• Connection between the logarithm of a matrix and 
the logarithm of its Jordan canonical form. 
• Formula for logarithm of a Jordan block.  
• Existence of principal logarithm of a non-degenerate 
matrix - Proposition 2.29. p.53. 
• Floquet representation of transfer matrix for 
periodic systems in Theorem 2.30, p.53.  
• Floquet Theorem 2.31 on the connection between 
the absolute values of Floquet multipliers and the 

Find a monodromy matrix for a simple equation that 
can be solved explicitly. 
Find if a periodic linear system has periodic solutions. 
Calculate Floquet multipliers for systems with 
separable variables where the transition matrix and 
the monodromy matrix can be calculated explicitely. 
Decide if solutions to such a system all tend to zero 
or stay bounded. 
Find using Corollary 2.33 if a periodic linear system 
has unbounded solutions. 
 



Floquet (characteristic) multipliers are 
eigenvalues to the monodromy matrix 
Φ(p,0): Definition p. 48 
 

boundedness and the zero limit of solutions to periodic 
linear systems. p. 54  
• Corollary 2.33, p 59 on a criterion for existence of 
unbounded solutions to a periodic linear system. 
•  Spectral mapping Theorem 2.19, p. 44, essentially in 
the case f(x)=exp(x) giving the connection between 
characteristic multipliers and eigenvalues to the 
logarithm of the monodromy matrix. 

 

 

 

 

NONLINEAR SYSTEMS 

Topics, notions, definitions Methods, theorems, lemmas and corollaries Typical problems 
Background notions from analysis 
Metric and normed vector spaces, pp.269-270  
Cauchy sequence. P. 270 
complete space, Banach space: p.270 
Open, closed, compact, connected sets p.270 
Bounded, compact, precompact sets, p. 270  
Space C(I) of continuous functions on a 
compact I. Uniform convergence p.273 
Fixed point theorems  
Fixed point of an operator. 
Contraction map. p.278 in Th. A.25 
Sequence of iterations,  p. 278 in the proof of 
Theorem A.25 

Background results from analysis 
• Space C(I) of continuous functions on a compact I is 
a Banach space. Example A.14, p. 272 
• Bolzano-Weierstrass theorem Theorem A.16, p. 
273 
• Banach’s contraction mapping principle. Theorem 
A.25, p.277 
 

Exercises on contraction principle.  
Show that an operator is a contraction in C(I). 
Show using the Banach contraction principle that 
a given operator has a fixed point in some ball. 

  Local existence and uniqueness theory for 
Initial Value Problem (IVP) 
Integral form of IVP, p. 102, p. 119 
extension of solution, p. 106 
maximal solution 
Lipschitz functions: formula 4.7, p. 115 
Picard iterations, p.23 
 

Local existence and uniqueness theory 
Gronwall’s inequality Lemma 2.4, p. 27 
Lipschitz condition and uniqueness of solutions Th. 
4.17, p. 118, Th. 4.18, p. 119. 
Contraction mapping principle for existence and 
uniqueness theorem (Picard-Lindelöf theorem) 
Theorem. Th. 4.22, p.122, Steps 1 and 2 of the proof. 
Picard iterations (p. 23) 

Identify Lipschitz functions of several variables. 
Use Gronwall inequality to estimate difference 
between solutions to an ODE  with different 
initial data on a finite time interval. 
Write explicitly 2-3 Picard iterations (p. 23) for 
an equation. Find conditions for convergence of 
Picard iterations for a particular equation. 

Extension (continuation) of solutions and 
maximal interval of existence. §4.2 
Continuation (extensibility) of solution 
Maximal existence interval , p. 106 
maximal solution, p. 106 
Global solution  

Nonlinear systems of ODE, Maximal solution. 
Existence of maximal solutions. Th. 4.8, p.108 
Extensibility to a boundary point of the existence 
interval.  Lemma 4.9, p. 110;   
Cor. 4.10, p. 111. On the size of the maximal interval  
Th. 4.11, p. 112 on possible limits and maximal 
existence intervals for maximal solutions 
Th. 4.25, p. 125 on possible limits and maximal 
existence intervals for maximal solutions 
Prop. 4.12, p.114, on “infinite” extensibility of 
solutions for ODE with linear bound on the right 
hand side. 

Investigate if an ODE has global solutions. 
Decide for solutions, starting in a certain domain 
how long they can be extended and which limits 
they might have for time going to infinity.  
For example  
Examples 1.2 p. 14, 4.33 on the page 139  
example 4.5, 4.6, 4.7 on pages 107-108 

   
Transition map. 
Transition property 
 Transition map or flow, for autonomous 
systems – translation property. 
 

Transition map (dynamical system)  
Transition property,  (Chapman Kolmogorov formula 
for non-linear systems) Theorem 4.26, pp. 126-127 
The domain and continuity of transition map. 
Theorem 4.29, Lemma 4.30, p. 129 

 

   
Autonomous systems 
Limit sets and invariant sets. 
Positive, negative semi-orbits  p. 141  
to a flow (dynamical system). 
ω -limit point and α limit point, p. 142 
ω -limit sets and α limit sets, p. 142 
Positively invariant, negatively invariant sets,  
p. 142. 

Properties of limit sets.  
Properties of limit sets: ω -limit sets are connected  
invariant sets Th. 4.38, p.143 
 

Find an omega (positively) invariant set with 
desired properties for an ODE. 
Using test functions to identify positively - 
invariant sets to an ODE 

Periodic solutions to autonomous systems in 
the plane  

Equilibrium (critical) points, p.145 
periodic points, periodic orbits, non-periodic 
orbits, p. 146 
Limit cycles are limit sets that are periodic 
orbits.  

Poincare - Bendixson theorem 4.46, p. 151 (without 
proof).: “A limit set of a solution in a compact 
positively invariant set without fixed points is a 
periodic orbit” 
 Bendixsons criterion for the non-existence of 
periodic solutions: div(f) >0 or div(f)<0 in a simply 
connected domain U - without holes (after lecture 

Prove that an ODE has at least one periodic 
solution by Poincare Bendixson theorem. 
 
Prove that an ODE in plane does not have 
periodic solutions in a domain using Bendixson’s 
negative criterion 
 



  
 

notes on the home page) 
First integrals and periodic orbits. §4.7.2 
Prop. 4.54, p. 161: level sets of  first integrals in the 
plane that are closed curves are periodic orbits. 

 

Stability of equilibrium points of nonlinear 
systems. Chapter 4. 
Definitions of stable and asymptotically stable 
equilibrium points. Definition 5.1, p. 169 
Def. 5.14, p.182. 
Stability by linearization 
Linearization of ODE. § 5.6, p.194 
 

Stability of equilibrium points of nonlinear systems.  
Stability of autonomous non-linear ODEs by 
linearization with Hurwitz variational matrix. 
Th. 5.27, p.193 and Corollary 5.29, p. 195. 
(the proof given on the lecture uses the Gronwall 
inequality and is available at the homepage).  
Grobman-Hartman theorem: solutions to a nonlinear 
system and its linearization around an equilibrium 
point are “equivalent” if all real parts of eigenvalues 
to the variational matrix are non zero   (lecture notes 
on the homepage without proof) 

Show stability of a fixed point using Theorem 
5.27, Corollary 5.29 about linearization with 
Hurwitz variational matrix 
Investigate stability of a fixed point using the 
Grobman- Hartman theorem about linearization. 

Stability of fixed points by the method with 
Lyapunov functions. 
 
Lyapunov function, V(0)=0, V(x)>0 for x not 0 
V_f <=0 
strict Lyapunov function: the same but  
𝑉𝑉𝑓𝑓(𝑥𝑥) < 0 for x not 0 

Stability of equilibrium points to autonomous ODE 
by Lyapunovs functions: Theorem 5.2, p. 170 
A constructive variant of the proof is available on the 
home page. 
Students are free to choose any variant of the proof 
to Th. 5.2 at the exam. 
Instability of fixed points to autonomous ODE by 
Lyapunovs method: Th. 5.7, p. 174 
A constructive variant of the proof to a slightly 
weaker theorem is available on the home page. 

Show stability (asymptotic stability) of a fixed 
point of an ODE  by Lyapunovs method. 
Show instability of a fixed point of an ODE  by 
Lyapunovs method. 

Invariance principles.  
Domain of attraction, Def. 5.19 p. 186 
Globally attractive equilibrium Def. 5.21, 
p.187 

 Invariance principles.  
LaSalle's invariance principle  Th.5.12, p.180; 
Proof in Exercise 5.9 on page 312 
 
Asymptotic stability by "weak" Lyapunov's functon 
using Krasovsky-La Salle theorem. Th. 5.15, p. 183 
 

  
Apply  -LaSalles invariance principle  to show 
asymptotic stability of a fixed point using a 
“weak” Lyapunov function. 
Find a domain of attraction for an asymptotically 
stable equilibrium point. 
Typical problems in the book are:  
Example 5.13, p. 181, 
Exercises 5.7, 5.8 ,  p. 182 

 


