Answers, hints and some solutions to exercises
in ODE and modeling MMG511/TMV162. Spring 2016.
Banach spaces. Lipschitz functions. Picard-Lindelof theorem.

Gronwall inequality. Uniqueness of solutions.

1. Prove that the space C'(1) of continuous vector valued functions on a bounded
closed interval I = [a,b], ¢ : [ — R" , with the norm ||| ¢ & sup,c; |o(t)] is a
Banach space, namely that [[¢[|o;, satisfies axioms for a norm and that this space

is complete with respect to it.

2. Find a bounded sequence {f,,}~_, in C(I), I = [a,b] such that there is no
convergent subsequence.

Answer. f,,(t) = sin(tm). One can argue by contradiction. Suppose there is a
uniform limit f(¢) for some subsequence {f,, ()} and show that it is impossible
because on a short interval |t —to| < e where |f(t) — f(to)] < 6 << 1 functions
fm, (t) will attain ALL walues between 1 and —1 for m; large enough (depending on

g, for example m; > 27(2¢)).

3. Let K = K(x,y) : [a,b] X [a,b] — R be continuous with 0 < K(z,y) < d for
all z,y € [a,b]. Let 2(b—a)d < 1
and ug(z) = 0, vo(z) = 1. Then both iterates

Unir(z) = / K (2 y)un(y)dy + 1
ab
vaa(z) = / K (2, y)um(y)dy + 1

converge to a unique solution to the equation

/ny y)dy + 1, x € [a,b]

Hint. Exersises 3 and 4 are solved in two steps.

At the first step one finds a closed ball B(R, 0) ={&(t) : sup,; |¢(t)| < R} in C(I)
such that the operator K (u f K(x,y)u(y)dy + 1 in the Ex. 3, correspondingly
operator T (x fo s)ds + ¢g(t) in the Ex.4 maps this ball to itself. In
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particular in the case of Ex. 4 one finds R such that for all functions ¢(¢) with
6] = sup,e; |6(t)] < R where I is the interval of integration, it is valid ||7 (u)|| =
supye; |7 (u) (t)| < R.One uses the inequality for integrals: | [ f(s)ds| < [|f(s)|ds
and the triangle inequality: [|¢ + A|| < |||l + || Al

At the second step one shows that K (u) and T (u) are a contractions on the

chosen B(R,0), namely for Ex. 4 one estimates the norm

17 (u) =7 (w)]| = sup

zel

/abB(a:, y)uly)dy — /abB(a:, y)w(y)dy‘

0T (u) =T (w)|| = 0[sup,e; |u(z) — w(z)|] with a positive constant 0 < 6 < 1

strictly smaller that 1. One can also carry out the second step first.

4. Consider the following operator

T@@zAB@W@w+W%

with B(t,s) and g¢(t) continuous functions and |B(t,s)| < 0.25 for all ¢,s € [0, 2]

acting in the Banach space C([0,2]) of continuous functions with norm |z| =

sup |z(t)] .
t€(0,2]

Show using Banach’s contraction principle that T'(x)(¢) has a fixed point.

5. Consider the following (nonlinear!) operator

mwwle@@mmmﬁyw

acting on the Banach space C([0,2]) of continuous functions with norm |z| =

sup |z(t)|. Here B(t,s) and g(t) are continuous functions and |B(t,s)| < 0.5 for
t€(0,2]
all t,s € [0,2]. Estimate the norm ||K(x) — K(y)|| for the operator K (z)(t). Find

requirements on the function g(¢) such that Banach’s contraction principle implies
that K (x)(t) has a fixed point.
Hint. This exersise is solved similarly to exercises 3 and 4 with an important

difference in the result. The non-linearity of the operator in this case makes that it



is contraction only on a small ball around zero function and only for a function g(t)
that is small enough.

Solution.

Banach’s contraction principle. Let B be a nonempty closed subset of a Banach

space X and let the non-linear operator K : B — B be a contraction.
[K(x) = K@) < 0flz—yll,0 <1

Then K has a fixed point T = K (Z) such that
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K'z)—7| <
K" (z) -7 < —

for any x € B.
We like to have the estimate ||K(z) — K(y)|| < 6 ||z — y|| for z,y in some closed
subset B of C(]0,2]).

K@) = K@l < sup [[7Bt.) (o) = lys)) ds

= sup |[3 B(t,5) (2(5) = y(s) (a(s) + (s)) ds

t€(0,2]

<

2
b, 811[01)2]3(75, sds| [l =yl |z +yll < llz =yl llz + yll <z =yl (] +[yl)
,5€|0,

We can choose a ball B C C(]0,2]) such that for any x, y € B it follows ||z|| +
lyll < 6 < 1, for example B can be taken as a set of functions with ||z| < 1/4. On
this set K will be a contraction because || K (z) — K(y)|| < ||l — vy (0.5).

To apply Banachs principle we need also that K maps B into itself, namely that
[ ()| < 1/4 for |lzf| < 1/4.

It gives a requirement on function ¢(¢). Estimate the operator K :

K@) < sup | [5 B(t,s) ([2(s)]*) ds| + sup |g(t)| < [|]* + |lg]

t€[0,2] t€[0,2]

If ||z|| < 1/4 then we like to have that ||K(x)| < 1/4 that follows if || K (z)| <
1/16 + [|g[| < 1/4

It is satisfied if ||g|] < 3/16. Therefore for ||g|| < 3/16 the operator K has
a unique fixed point in the ball B : ||z|| < 1/4. vskip 0.3cm 6. Consider I.V.P.

v = 1y? +1t; y(1) = 0. Reduce it to an integral equation and calculate successive




approximations o, y1,%2. Find time interval for which successive approximations

converge.
7. Show that if f € C*(D) then it is locally Lipschitz in D.

8. Are following functions Lipschitz near zero?

i) f(2) = =

(ii) f () = |,

(iii) f(z) = z%sin (%) )

Answer: (i) - Lipschitz, (ii) - not Lipschitz, (iii) Lipschitz after defining f(0) = 0.

9. Prove that I.V.P. for a linear ODE 2’/ = A(t)z, x(to) = xo, with z(t), xy € R",
A(t)- n x n matrix, A(t) € C(R) has a unique solution for arbitrary (to, zo).

Answer. Function f(z,t) = A(t)z has continuous partial derivatives with respect
to coordinates x; of x € R" that are components A,,,(t) of A. It makes function
f(z,t) = A(t)x Lipschitz with respect to = and implies the uniquness of solutions.
The Lipschitz constant can be chosen as L = sup;e(y, 79.p.m (| Apm(t)])<oco because
A(t) is continuous on [ty, T| C R.

10. Prove the particular case of the Gronwall inequality:

o0 < rews | tu(s)ds) ,

in the case \ is a constant , u(t) > 0 and y(t) has for ¢ € [a, b] the property

o0 <3+ ([ uteiioras)

Hint. Integrate the general Gronwall inequality with constant A by parts using
t
that 4 (fa u(s)ds) = u(t).

11. Find general solution to following ODE: 2’ = (1 — x) — ¢. Investigate the
behaviour of solutions depending on initial data z(0) > 0 and on the constant ¢ > 0.

Observe that the equation describes the evolution of a population z with limited
growth and harvest rate c¢. Can one find an optimal harvest?

Hint. Observe that the equation is with separablr variables and that the an-
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alytical form of the solution depends on how many real roots has the equation

x(1 —x) — ¢ = 0. These roots are dependent on turn on the constant c.

12.



