
Answers, hints and some solutions to exercises

in ODE and modeling MMG511/TMV162. Spring 2016.

Banach spaces. Lipschitz functions. Picard-Lindelöf theorem.

Gronwall inequality. Uniqueness of solutions.

1. Prove that the space C(I) of continuous vector valued functions on a bounded

closed interval I = [a; b], ' : I 7�! Rn , with the norm k'kC(I)
def
= supt2I j'(t)j is a

Banach space, namely that k'kC(I) satis�es axioms for a norm and that this space

is complete with respect to it.

2. Find a bounded sequence ffmg1m=1 in C(I), I = [a; b] such that there is no

convergent subsequence.

Answer. fm(t) = sin(tm). One can argue by contradiction. Suppose there is a

uniform limit f(t) for some subsequence ffml
(t)g1

l=1
and show that it is impossible

because on a short interval jt� t0j � " where jf(t)� f(t0)j � � << 1 functions

fml
(t) will attain ALL walues between 1 and �1 for ml large enough (depending on

", for example ml > 2�(2")).

3. Let K = K(x; y) : [a; b]� [a; b] 7�! R be continuous with 0 � K(x; y) � d for
all x; y 2 [a; b]. Let 2(b� a)d � 1
and u0(x) � 0, v0(x) � 1. Then both iterates

un+1(x) =

Z b

a

K(x; y)un(y)dy + 1

vn+1(x) =

Z b

a

K(x; y)vn(y)dy + 1

converge to a unique solution to the equation

u(x) =

Z b

a

K(x; y)u(y)dy + 1; x 2 [a; b]

Hint. Exersises 3 and 4 are solved in two steps.

At the �rst step one �nds a closed ballB(R; 0)=f�(t) : supt2I j�(t)j � Rg inC(I)
such that the operator K (u) =

R b
a
K(x; y)u(y)dy + 1 in the Ex. 3, correspondingly

operator T (x) =
R 2
0
B(t; s)x(s)ds + g(t) in the Ex.4 maps this ball to itself. In
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particular in the case of Ex. 4 one �nds R such that for all functions �(t) with

k�k = supt2I j�(t)j � R where I is the interval of integration, it is valid kT (u)k =
supt2I jT (u) (t)j � R:One uses the inequality for integrals:

��R f(s)ds�� � R jf(s)j ds
and the triangle inequality: k�+ �k � k�k+ k�k.
At the second step one shows that K (u) and T (u) are a contractions on the

chosen B(R; 0); namely for Ex. 4 one estimates the norm

kT (u)� T (w)k = sup
x2I

����Z b

a

B(x; y)u(y)dy �
Z b

a

B(x; y)w(y)dy

����
� kT (u)� T (w)k = � [supx2I ju(x)� w(x)j] with a positive constant 0 < � < 1

strictly smaller that 1. One can also carry out the second step �rst.

4. Consider the following operator

T (x)(t) =
Z 2

0

B(t; s)x(s)ds+ g(t);

with B(t; s) and g(t) continuous functions and jB(t; s)j < 0:25 for all t; s 2 [0; 2]
acting in the Banach space C([0; 2]) of continuous functions with norm kxk =
sup
t2[0;2]

jx(t)j :

Show using Banach�s contraction principle that T (x)(t) has a �xed point.

5. Consider the following (nonlinear!) operator

K(x)(t) =

Z 2

0

B(t; s) [x(s)]2 ds+ g(t);

acting on the Banach space C([0; 2]) of continuous functions with norm kxk =
sup
t2[0;2]

jx(t)j. Here B(t; s) and g(t) are continuous functions and jB(t; s)j < 0:5 for

all t; s 2 [0; 2] : Estimate the norm kK(x)�K(y)k for the operator K(x)(t): Find
requirements on the function g(t) such that Banach�s contraction principle implies

that K(x)(t) has a �xed point.

Hint. This exersise is solved similarly to exercises 3 and 4 with an important

di¤erence in the result. The non-linearity of the operator in this case makes that it
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is contraction only on a small ball around zero function and only for a function g(t)

that is small enough.

Solution.

Banach�s contraction principle. Let B be a nonempty closed subset of a Banach

space X and let the non-linear operator K : B ! B be a contraction:

kK(x)�K(y)k � � kx� yk ; � < 1

Then K has a �xed point x = K(x) such that

kKn(x)� xk � �n

1� �

for any x 2 B.
We like to have the estimate kK(x)�K(y)k � � kx� yk for x; y in some closed

subset B of C([0; 2]).

kK(x)�K(y)k � sup
t2[0;2]

���R 20 B(t; s) �[x(s)]2 � [y(s)]2� ds���
= sup

t2[0;2]

���R 20 B(t; s) (x(s)� y(s)) (x(s) + y(s)) ds��� ������R 20 sup
t;s2[0;2]

B(t; s)ds

����� kx� yk kx+ yk � kx� yk kx+ yk � kx� yk (kxk+ kyk)
We can choose a ball B � C([0; 2]) such that for any x, y 2 B it follows kxk +

kyk � � < 1; for example B can be taken as a set of functions with kxk � 1=4. On
this set K will be a contraction because kK(x)�K(y)k � kx� yk (0:5) :
To apply Banachs principle we need also that K maps B into itsel·f, namely that

kK(x)k � 1=4 for kxk < 1=4.
It gives a requirement on function g(t). Estimate the operator K :

kK(x)k � sup
t2[0;2]

���R 20 B(t; s) �[x(s)]2� ds���+ sup
t2[0;2]

jg(t)j � kxk2 + kgk

If kxk < 1=4 then we like to have that kK(x)k � 1=4 that follows if kK(x)k �
1=16 + kgk � 1=4
It is satis�ed if kgk � 3=16. Therefore for kgk � 3=16 the operator K has

a unique �xed point in the ball B : kxk � 1=4. vskip 0.3cm 6. Consider I.V.P.

y0 = y2 + t; y(1) = 0. Reduce it to an integral equation and calculate successive
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approximations y0; y1; y2. Find time interval for which successive approximations

converge.

7. Show that if f 2 C1(D) then it is locally Lipschitz in D.

8. Are following functions Lipschitz near zero?

(i) f(x) = 1
1�x2 :

(ii) f(x) = jxj1=2 :
(iii) f(x) = x2 sin

�
1
x

�
:

Answer: (i) - Lipschitz, (ii) - not Lipschitz, (iii) Lipschitz after de�ning f(0) = 0.

9. Prove that I.V.P. for a linear ODE x0 = A(t)x, x(t0) = x0, with x(t); x0 2 Rn,
A(t)- n� n matrix, A(t) 2 C(R) has a unique solution for arbitrary (t0; x0):
Answer. Function f(x; t) = A(t)x has continuous partial derivatives with respect

to coordinates xi of x 2 Rn that are components Apm(t) of A. It makes function
f(x; t) = A(t)x Lipschitz with respect to x and implies the uniquness of solutions.

The Lipschitz constant can be chosen as L = supt2[t0;T ];p;m (jApm(t)j)<1 because

A(t) is continuous on [t0; T ] � R.

10. Prove the particular case of the Gronwall inequality:

y(t) � � exp
�Z t

a

�(s)ds

�
;

in the case � is a constant , �(t) > 0 and y(t) has for t 2 [a; b] the property

y(t) � �+
�Z t

a

�(s)y(s)ds

�
;

Hint. Integrate the general Gronwall inequality with constant � by parts using

that d
dt

�R t
a
�(s)ds

�
= �(t).

11. Find general solution to following ODE: x0 = x(1 � x) � c. Investigate the
behaviour of solutions depending on initial data x(0) > 0 and on the constant c > 0:

Observe that the equation describes the evolution of a population x with limited

growth and harvest rate c. Can one �nd an optimal harvest?

Hint. Observe that the equation is with separablr variables and that the an-
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alytical form of the solution depends on how many real roots has the equation

x(1� x)� c = 0: These roots are dependent on turn on the constant c.

12.
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