Exercises on general linear ODE

- 1. Show that (A(t)B(t))' = A'(t)B(t) + A(t)B'(t) for $n \times n$ matrices A(t) and B(t) with differentiable elements.
- 2. Show that det(exp(A)) = exp(trA) for any constant matrix A.
- 3. If $t \mapsto \Psi(t)$ is a fundamental matrix solution for the system $x' = A(t)x, x \in \mathbb{R}^n$. It means that $\Psi'(t) = A(t)\Psi(t)$.

Then the matrix valued function $\Phi(t,\tau) = \Psi(t)\Psi^{-1}(\tau)$ is called the transition matrix function: it is a fundamental matrix solution with respect to the variable t for each τ such that $\Phi(\tau,\tau) = I$. It implies that the solution x(t) to I.V.P.

$$x' = A(t)x, \quad x(\tau) = \xi$$

with initial data ξ at the time τ is given by the expression:

$$x(t) = \Phi(t, \tau)\xi$$

The matrix $\Phi(t,\tau)$ satisfies Chapman-Kolmogorov identities:

$$\Phi(t,s)\Phi(s,\tau) = \Phi(t,\tau)$$

(semigroup property) and

$$\Phi^{-1}(t,s) = \Phi(s,t), \qquad \frac{\partial \Phi(t,s)}{\partial s} = -\Phi(t,s)A(s)$$

Prove these statements.

4. Calculate the transition matrix function $\Phi(t,s)$ for the system of equations

$$\begin{cases} x_1' = t x_1 \\ x_2' = x_1 + t x_2 \end{cases}$$

5. Calculate the transition matrix function $\Phi(t,s)$ for the system of equations

$$\begin{cases} x_1' = x_1 + tx_2 \\ x_2' = 2x_2 \end{cases}$$

- 6. Suppose that every solution of x' = A(t)x is bounded for $t \ge 0$ and let $\Psi(t)$ be a fundamental matrix solution. Prove that $\Psi^{-1}(t)$ is bounded for $t \ge 0$ if and only if the function $t \to \int_0^t \operatorname{tr} A(s) ds$ is bounded from below. Hint: The inverse of a matrix is the adjugate of the matrix divided by its determinant. See: http://en.wikipedia.org/wiki/Adjugate_matrix
- 7. Suppose that the linear system x' = A(t)x is defined on an open interval containing the origin whose right-hand end point is $w \le \infty$ and the norm of every solution has a finite limit as $t \to w$. Show that there is a solution converging to zero as $t \to w$ if and only if $\int_0^w \operatorname{tr} A(s) ds = -\infty$. **Hint**: Use Abels formula and the fact that a matrix has a nontrivial kernel if and only if its determinant is zero.
- and only if its determinant is zero. 7a. Show that if $\liminf_{t\to+\infty}\int_{t_0}^t tr(A(s))ds=+\infty$ then the equation x'=A(t)x has an unbounded solution. Hint: use Abel's formula.
- 8. Let A be an invertible constant matrix. Show that the only invariant lines for the linear system x' = Ax, $x \in \mathbb{R}^2$ are the lines $ax_1 + bx_2 = 0$ where $[-b, a]^T$ is an eigenvector to A.
 - 9. Show that for arbitrary $n \times n$ matrix A the relation $\det(I + \varepsilon A + O(\varepsilon^2)) = 1 + \varepsilon \operatorname{tr}(A) + O(\varepsilon^2)$
- 10. Consider the flow $\phi(t,x)$ corresponding to the autonomous equation $y'=f(y), y \in \mathbb{R}^n$ mapping the domain Ω to the domain as $\Omega_t = \{y = \phi(t,x), x \in \Omega\}$ where y is the solution to the ODE y' = f(y) with initial data $y(0) = x \in \Omega$.

Show that $\frac{d}{dt}(Vol(\Omega_t)) = \int_{\Omega_t} \operatorname{div}(f) dy$. **Hint:** use the result of Ex.9.

11. Show directly that the area of a unit disk is preserved when it is transformed forward to 2 time units by the flow, corresponding to the system x' = y, y' = x. **Hint**: consider the system in new variables x + y and x - y.

Solution to 3.

- $\Phi(t,s)\Phi(s,\tau) = \Psi(t)\Psi^{-1}(s)\Psi(s)\Psi^{-1}(\tau) = \Psi(t)\Psi^{-1}(\tau) = \Phi(t,\tau).$
- $\Phi^{-1}(t,s) = (\Psi(t)\Psi^{-1}(s))^{-1} = (\Psi^{-1}(s))^{-1} (\Psi(t))^{-1} = \Psi(s)\Psi^{-1}(t) = \Phi(s,t).$
- $\frac{\partial \Phi(t,s)}{\partial s} = -\Phi(t,s)A(s)$

Use the relation: $\frac{d}{ds} \left(\Psi^{-1}(s) \right) = -\Psi^{-1}(s) \frac{d}{ds} \left(\Psi(s) \right) \Psi^{-1}(s)$

$$\frac{\partial \Phi(t,s)}{\partial s} = \frac{\partial \left(\Phi^{-1}(s,t)\right)}{\partial s} = \left(-\Phi^{-1}(s,t)\frac{\partial}{\partial s}\left(\Phi(s,t)\right)\Phi^{-1}(s,t)\right) = -\Phi^{-1}(s,t)A\Phi(s,t)\Phi^{-1}(s,t) = -\Phi^{-1}(s,t)A = -\Phi(t,s)A$$

Solution to the scalar linear equation x' = p(t)x + g(t) with initial data $x(\tau) = x_0$ is calculated using the primitive function $\mathbb{P}(t,\tau)$ of p(t).

$$x' = p(t)x + g(t)$$

$$\mathbb{P}(t,\tau) = \int_{\tau}^{t} p(s)ds$$

$$x(t) = \exp \{\mathbb{P}(t,\tau)\} x_0 + \int_{\tau}^{t} \exp \{\mathbb{P}(t,s)\} g(s)ds$$

$$x(\tau) = x_0$$

The system of ODE above has triangular matrix and can be solved recursively starting from the first equation.

The fundamental matrix $\Phi(t,s)$ has columns π_1 and π_2 that at the time τ have initial values $[1,0]^T$ and [0,1], because

$$\Phi(au, au)=I=\left[egin{array}{cc} 1 & 0 \ 0 & 1 \end{array}
ight].$$

In the equation $x_1' = t x_1$ the coefficient p(t) = t, therefore $\mathbb{P}(t,\tau) = \int_{\tau}^{t} s \, ds = \left(\frac{1}{2}s^2\right)\Big|_{\tau}^{t} = \frac{1}{2}\left(t^2 - \tau^2\right)$ and the solution $x_1(t) = \exp(\frac{1}{2}(t^2 - \tau^2))x_1(\tau).$

The second equation $x_2' = t x_2 + x_1$ is similar but inhomogeneous: $x_2(t) = \exp(\mathbb{P}(t, t_0)) x_2(t_0) + \int_{t_0}^t \exp(\mathbb{P}(t, s)) x_1(s) ds$. Substituting $\mathbb{P}(t, \tau) = \frac{1}{2} \left(t^2 - \tau^2\right)$ we conclude that $x_2(t) = \exp(\frac{1}{2} \left(t^2 - \tau^2\right)) x_2(\tau) + \int_{\tau}^t \exp(\frac{1}{2} \left(t^2 - s^2\right)) \exp(\frac{1}{2} \left(s^2 - \tau^2\right)) x_1(\tau) ds = \exp(\frac{1}{2} \left(t^2 - \tau^2\right)) x_2(\tau) + \int_{\tau}^t \exp(\frac{1}{2} \left(t^2 - \tau^2\right)) x_1(\tau) ds$ And

 $x_2(t) = \exp(\frac{1}{2}(t^2 - \tau^2))x_2(\tau) + \exp(\frac{1}{2}(t^2 - \tau^2))x_1(\tau)(t - \tau)$. The fundamental matrix solution $\Phi(t, \tau)$ has columns that are solutions to x' = A(t)x with initial data - that are columns in the unit matrix: $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$,

Taking $x_1(\tau) = 1$ and $x_2(\tau) = 0$ we get $x_1(t) = \exp(\frac{1}{2}(t^2 - \tau^2))$ with $x_2(t) = \exp(\frac{1}{2}(t^2 - \tau^2))(t - \tau)$

Taking $x_1(\tau) = 0$ and $x_2(\tau) = 1$ we get $x_1(t) = 0$ with $x_2(t) = \exp(\frac{1}{2}(t^2 - \tau^2))$ and the fundamental matrix solution in the form

$$\Phi(t,\tau) = \exp(\frac{1}{2} \left(t^2 - \tau^2 \right)) \begin{bmatrix} 1 & 0 \\ t - \tau & 1 \end{bmatrix}$$

2

Solution to 5. The solution is similar to the problem 4.

$$x' = p(t)x + g(t)$$

$$\mathbb{P}(t, t_0) = \int_{t_0}^t p(s)ds$$

$$x(t) = \exp\left\{\mathbb{P}(t, t_0)\right\} x_0 + \int_{t_0}^t \exp\left\{\mathbb{P}(t, s)\right\} g(s)ds$$

$$x(t_0) = x_0$$

$$\left\{ \begin{array}{l} x'_1 = x_1 + tx_2 \\ x'_2 = 2x_2 \end{array} \right. x' = Ax, A = \begin{bmatrix} 1 & t \\ 0 & 2 \end{bmatrix}$$

$$\Phi(t, \tau) = (\pi_1(t, \tau), \pi_2(t, \tau)).$$

$$\frac{\partial}{\partial t} \pi_1 = A\pi_1; \qquad \frac{\partial}{\partial t} \pi_2 = A\pi_2$$

$$(1)$$

$$\pi_1(\tau,\tau) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \, \pi_2(\tau,\tau) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

We solve first the equation for $x_2(t)$ with initial data $x_2(\tau)$:

$$x_2(t) = x_2(\tau) \exp(2(t-\tau))$$

and then the equation for $x_1(t)$ with initial data $x_1(\tau)$ and substituting the solution for $x_2(t) = x_2(\tau) \exp(2(t-\tau))$ into the right hand side of the equation, both according to the formula in (1)

$$x_{1}(t) = x_{1}(\tau) \exp(t - \tau) + \int_{\tau}^{t} \exp(t - s) \left[s \, x_{2}(\tau) \exp(2(s - \tau)) \right] ds$$

$$= x_{1}(\tau) \exp(t - \tau) + x_{2}(\tau) \exp(t - 2\tau) \int_{\tau}^{t} \exp(s) s ds =$$

$$\left\{ \int_{\tau}^{t} \exp(s) s ds = t e^{t} - \tau e^{\tau} - (e^{t} - e^{\tau}) \right\}$$

$$= x_{1}(\tau) \exp(t - \tau) + x_{2}(\tau) \left(e^{t - \tau} - \tau e^{t - \tau} - e^{2(t - \tau)} + t e^{2(t - \tau)} \right)$$

and substitute particular initial data for $\pi_1(t,\tau), \pi_2(t,\tau)$:

$$\Phi(t,\tau) = \begin{bmatrix} \exp(t-\tau) & \exp(t-\tau)(1-\tau) + \exp(2(t-\tau))(t-1) \\ 0 & \exp(2(t-\tau)) \end{bmatrix}$$

Solution to 6.

Suppose that every solution of x' = A(t)x is bounded for $t \ge 0$ and let $\Psi(t)$ be a fundamental matrix solution. Prove that $\Psi^{-1}(t)$ is bounded for $t \geq 0$ if and only if the function $t \to \int_0^t \operatorname{tr} A(s) ds$ is bounded from below. Hint: The inverse of a matrix is the adjugate of the matrix divided by its determinant, namely $\Psi^{-1}(t) = \left[\det(\Psi(t))\right]^{-1} \left[Adj(\Psi(t))\right]$. The adjugate $Adj(B) = \int_0^T \operatorname{d}t dt dt$ $\left(\widetilde{B}\right)^{T}$ where the matrix \widetilde{B} is a matrix of the same size as B with elements in \widetilde{B}_{ij} calculated as n-1 dimentional determinants of the matrix B with eliminated i-th row and j-th column times $(-1)^{i+j}$. See http://en.wikipedia.org/wiki/Adjugate matrix The fact that all solutions to the ODE are bounded for $t \geq 0$ implies that all elements in $\Psi(t)$ are bounded for $t \geq 0$ and therefore all elements of $Adj(\Psi(t))$ are bounded for $t \geq 0$ since they consist of sums of products of bounded elements

in $\Psi(t)$ times ± 1 . It implies that $\Psi^{-1}(t)$ is bounded (has bounded elements) for $t \geq 0$ if and only if $[\det(\Psi(t))]^{-1}$ is bounded that is equivalent to that $|\det(\Psi(t))|$ is bounded from below for for $t \geq 0$. Abel's formula gives that $\det(\Psi(t)) =$ $\det(\Psi(0)) \exp\left(\int_0^t \operatorname{tr} A(s) ds\right)$ and that $|\det(\Psi(t))| = |\det(\Psi(0))| \exp\left(\int_0^t \operatorname{tr} A(s) ds\right) > a > 0$, (bounded from below) if and only

if $\ln\left(\left|\det(\Psi(0)\right|\right) + \left(\int_0^t \operatorname{tr} A(s)ds\right) > \ln a$ or

$$\left(\int_0^t \operatorname{tr} A(s)ds\right) > \ln a - \ln\left(\left|\det(\Psi(0))\right|\right)$$

It implies that $|\det(\Psi(t))|$ is bounded from below if and only if $\int_0^t \operatorname{tr} A(s) ds$ is bounded from below for $t \geq 0$ (cannot go to $-\infty$ with $t_k \to +\infty$ for some for some sequence of times $\{t_k\}_{k=1}^{\infty}$).

Solution to 9.

Abel's formula for fundamental matrix solution is $\det(\Psi(t)) = \det(\Psi(0)) \exp\left(\int_0^t \operatorname{tr} A(s) ds\right)$. For

$$\det(\exp(tA)) = \det(I) \exp\left(\int_0^t \operatorname{tr} A ds\right) = \exp\left(t \operatorname{tr} A\right)$$

$$\det((I + \varepsilon A) + O(\varepsilon^2)) = \det((I + \varepsilon A) + O(\varepsilon^2) - \exp(\varepsilon A) + \exp(\varepsilon A)) = \det(\exp(\varepsilon A) + O(\varepsilon^2)) = \det\left(\exp\left(\varepsilon \operatorname{tr} A\right)\right) + O(\varepsilon^2)$$

$$= \exp\left(\varepsilon \operatorname{tr} A\right) + O(\varepsilon^2) = 1 + \varepsilon \operatorname{tr} (A) + O(\varepsilon^2).$$

One can also give a direct proof considering an expansion of $\det((I + \varepsilon A) + O(\varepsilon^2))$ according to the addition rool for determinants and observing that the only terms of order zero and one in $\varepsilon \to 0$ in the determinant are 1 and εA_{ii} . Adding the last ones leads to $\varepsilon \operatorname{tr}(A)$.

Solution to 10.

Consider the flow $\phi(t,x)$ corresponding to the autonomous equation $y'=f(y), y \in \mathbb{R}^n$ mapping the domain Ω to the domain as $\Omega_t = \{y = \phi(t,x), x \in \Omega\}$ where y is the solution to the ODE y' = f(y) with initial data $y(0) = x \in \Omega$.

Show that
$$\frac{d}{dt}(Vol(\Omega_t)) = \int_{\Omega_t} \operatorname{div}(f) dy$$
. **Hint:** use the result of Ex.9.

$$(Vol(\Omega_t)) = \int_{\Omega_t} dx$$

Considering derivative of the integral is useful to have the integration over a fixed domain and function under the integral depending on time. To implement this idea we introduce a change of variables such that the domain of integration for time t coinsides with the "initial" domain Ω_0 and

consides with the "initial" domain
$$\Omega_0$$
 and $(Vol(\Omega_t)) = \int_{\Omega_t} dx = \int_{\Omega_0} \left| \det \left[\frac{D\phi(t,x)}{Dx} \right] \right| dx$ Consider this integral for $t \to 0$.
$$\frac{D}{Dx}\phi(t,x) = \frac{D}{Dx}\left[Ix + t f(0,x) + O(t^2)\right] = \left[I + t \frac{D}{Dx} f(0,x) + O(t^2)\right], \text{ for } t \to 0$$

$$\det \left[\frac{D}{Dx}\phi(t,x) \right] = \det \left[I + t \frac{D}{Dx} f(0,x) + O(t^2)\right] = 1 + t \operatorname{tr} \left[\frac{D}{Dx} f(0,x) \right] + O(t^2) \ge 0, \text{ for } t \to 0$$
 and
$$\left| \det \left[\frac{D\phi(t,x)}{Dx} \right] \right| = \det \left[\frac{D}{Dx}\phi(t,x) \right]$$

$$\operatorname{tr} \left[\frac{D}{Dx} f(0,x) \right] = \operatorname{div} (f(0,x))$$

$$\frac{d}{dt} \left(Vol(\Omega_t) \right)_{t=0} = \int_{\Omega_0} \operatorname{div} (f(0,x)) dx$$
 The same argument works naturally for any time t .