Exercises on general linear ODE

1. Show that $(A(t) B(t))^{\prime}=A^{\prime}(t) B(t)+A(t) B^{\prime}(t)$ for $n \times n$ matrices $A(t)$ and $B(t)$ with differentiable elements.
2. Show that $\operatorname{det}(\exp (A))=\exp (\operatorname{tr} A)$ for any constant matrix A.
3. If $t \longmapsto \Psi(t)$ is a fundamental matrix solution for the system $x^{\prime}=A(t) x, x \in \mathbb{R}^{n}$. It means that $\Psi^{\prime}(t)=A(t) \Psi(t)$.

Then the matrix valued function $\Phi(t, \tau)=\Psi(t) \Psi^{-1}(\tau)$ is called the transition matrix function: it is a fundamental matrix solution with respect to the variable t for each τ such that $\Phi(\tau, \tau)=I$. It implies that the solution $x(t)$ to I.V.P.

$$
x^{\prime}=A(t) x, \quad x(\tau)=\xi
$$

with initial data ξ at the time τ is given by the expression:

$$
x(t)=\Phi(t, \tau) \xi
$$

The matrix $\Phi(t, \tau)$ satisfies Chapman-Kolmogorov identities:

$$
\Phi(t, s) \Phi(s, \tau)=\Phi(t, \tau)
$$

(semigroup property) and

$$
\Phi^{-1}(t, s)=\Phi(s, t), \quad \frac{\partial \Phi(t, s)}{\partial s}=-\Phi(t, s) A(s)
$$

Prove these statements.
4. Calculate the transition matrix function $\Phi(t, s)$ for the system of equations

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=t x_{1} \\
x_{2}^{\prime}=x_{1}+t x_{2}
\end{array}\right.
$$

5. Calculate the transition matrix function $\Phi(t, s)$ for the system of equations

$$
\left\{\begin{aligned}
x_{1}^{\prime} & =x_{1}+t x_{2} \\
x_{2}^{\prime} & =2 x_{2}
\end{aligned}\right.
$$

6. Suppose that every solution of $x^{\prime}=A(t) x$ is bounded for $t \geq 0$ and let $\Psi(t)$ be a fundamental matrix solution. Prove that $\Psi^{-1}(t)$ is bounded for $t \geq 0$ if and only if the function $t \rightarrow \int_{0}^{t} \operatorname{tr} A(s) d s$ is bounded from below. Hint: The inverse of a matrix is the adjugate of the matrix divided by its determinant. See: http://en.wikipedia.org/wiki/Adjugate_matrix
7. Suppose that the linear system $x^{\prime}=A(t) x$ is defined on an open interval containing the origin whose right-hand end point is $w \leq \infty$ and the norm of every solution has a finite limit as $t \rightarrow w$. Show that there is a solution converging to zero as $t \rightarrow w$ if and only if $\int_{0}^{w} \operatorname{tr} A(s) d s=-\infty$. Hint: Use Abels formula and the fact that a matrix has a nontrivial kernel if and only if its determinant is zero.

7a. Show that if $\lim _{\inf }^{t \rightarrow+\infty}$ 期 $t r(A(s)) d s=+\infty$ then the equation $x^{\prime}=A(t) x$ has an unbounded solution. Hint: use Abel's formula.
8. Let A be an invertible constant matrix. Show that the only invariant lines for the linear system $x^{\prime}=A x, x \in R^{2}$ are the lines $a x_{1}+b x_{2}=0$ where $[-b, a]^{T}$ is an eigenvector to A.
9. Show that for arbitrary $n \times n$ matrix A the relation $\operatorname{det}\left(I+\varepsilon A+O\left(\varepsilon^{2}\right)\right)=1+\varepsilon \operatorname{tr}(A)+O\left(\varepsilon^{2}\right)$
10. Consider the flow $\phi(t, x)$ corresponding to the autonomous equation $y^{\prime}=f(y), y \in \mathbb{R}^{n}$ mapping the domain Ω to the domain as $\Omega_{t}=\{y=\phi(t, x), x \in \Omega\}$ where y is the solution to the ODE $y^{\prime}=f(y)$ with initial data $y(0)=x \in \Omega$.

Show that $\frac{d}{d t}\left(\operatorname{Vol}\left(\Omega_{t}\right)\right)=\int_{\Omega_{t}} \operatorname{div}(f) d y$. Hint: use the result of Ex.9.
11. Show directly that the area of a unit disk is preserved when it is transformed forward to 2 time units by the flow, corresponding to the system $x^{\prime}=y, y^{\prime}=x$. Hint: consider the system in new variables $x+y$ and $x-y$.

Solutions.

Solution to 3.

- $\Phi(t, s) \Phi(s, \tau)=\Psi(t) \Psi^{-1}(s) \Psi(s) \Psi^{-1}(\tau)=\Psi(t) \Psi^{-1}(\tau)=\Phi(t, \tau)$.
- $\Phi^{-1}(t, s)=\left(\Psi(t) \Psi^{-1}(s)\right)^{-1}=\left(\Psi^{-1}(s)\right)^{-1}(\Psi(t))^{-1}=\Psi(s) \Psi^{-1}(t)=\Phi(s, t)$,
- $\frac{\partial \Phi(t, s)}{\partial s}=-\Phi(t, s) A(s)$

Use the relation: $\frac{d}{d s}\left(\Psi^{-1}(s)\right)=-\Psi^{-1}(s) \frac{d}{d s}(\Psi(s)) \Psi^{-1}(s)$

$$
\frac{\partial \Phi(t, s)}{\partial s}=\frac{\partial\left(\Phi^{-1}(s, t)\right)}{\partial s}=\left(-\Phi^{-1}(s, t) \frac{\partial}{\partial s}(\Phi(s, t)) \Phi^{-1}(s, t)\right)=-\Phi^{-1}(s, t) A \Phi(s, t) \Phi^{-1}(s, t)=-\Phi^{-1}(s, t) A=-\Phi(t, s) A
$$

Solution to 4.

Solution to the scalar linear equation $x^{\prime}=p(t) x+g(t) \quad$ with initial data $x(\tau)=x_{0}$ is calculated using the primitive function $\mathbb{P}(t, \tau)$ of $p(t)$.

$$
\begin{aligned}
x^{\prime} & =p(t) x+g(t) \\
\mathbb{P}(t, \tau) & =\int_{\tau}^{t} p(s) d s \\
x(t) & =\exp \{\mathbb{P}(t, \tau)\} x_{0}+\int_{\tau}^{t} \exp \{\mathbb{P}(t, s)\} g(s) d s \\
x(\tau) & =x_{0}
\end{aligned}
$$

The system of ODE above has triangular matrix and can be solved recursively starting from the first equation.
The fundamental matrix $\Phi(t, s)$ has columns π_{1} and π_{2} that at the time τ have initial values $[1,0]^{T}$ and $[0,1]$, because $\Phi(\tau, \tau)=I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.

In the equation $x_{1}^{\prime}=t x_{1}$ the coefficient $p(t)=t$, therefore $\mathbb{P}(t, \tau)=\int_{\tau}^{t} s d s=\left.\left(\frac{1}{2} s^{2}\right)\right|_{\tau} ^{t}=\frac{1}{2}\left(t^{2}-\tau^{2}\right)$ and the solution $x_{1}(t)=\exp \left(\frac{1}{2}\left(t^{2}-\tau^{2}\right)\right) x_{1}(\tau)$.

The second equation $x_{2}^{\prime}=t x_{2}+x_{1}$ is similar but inhomogeneous: $x_{2}(t)=\exp \left(\mathbb{P}\left(t, t_{0}\right)\right) x_{2}\left(t_{0}\right)+\int_{t_{0}}^{t} \exp (\mathbb{P}(t, s)) x_{1}(s) d s$.
Substituting $\mathbb{P}(t, \tau)=\frac{1}{2}\left(t^{2}-\tau^{2}\right)$ we conclude that $x_{2}(t)=\exp \left(\frac{1}{2}\left(t^{2}-\tau^{2}\right)\right) x_{2}(\tau)+\int_{\tau}^{t} \exp \left(\frac{1}{2}\left(t^{2}-s^{2}\right)\right) \exp \left(\frac{1}{2}\left(s^{2}-\tau^{2}\right)\right) x_{1}(\tau) d s=$ $\exp \left(\frac{1}{2}\left(t^{2}-\tau^{2}\right)\right) x_{2}(\tau)+\int_{\tau}^{t} \exp \left(\frac{1}{2}\left(t^{2}-\tau^{2}\right)\right) x_{1}(\tau) d s$
\quad And
$x_{2}(t)=\exp \left(\frac{1}{2}\left(t^{2}-\tau^{2}\right)\right) x_{2}(\tau)+\exp \left(\frac{1}{2}\left(t^{2}-\tau^{2}\right)\right) x_{1}(\tau)(t-\tau)$. The fundamental matrix solution $\Phi(t, \tau)$ has columns that are solutions to $x^{\prime}=A(t) x$ with initial data - that are columns in the unit matrix: $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$,

Taking $x_{1}(\tau)=1$ and $x_{2}(\tau)=0$ we get $x_{1}(t)=\exp \left(\frac{1}{2}\left(t^{2}-\tau^{2}\right)\right)$ with $x_{2}(t)=\exp \left(\frac{1}{2}\left(t^{2}-\tau^{2}\right)\right)(t-\tau)$
Taking $x_{1}(\tau)=0$ and $x_{2}(\tau)=1$ we get $x_{1}(t)=0$ with $x_{2}(t)=\exp \left(\frac{1}{2}\left(t^{2}-\tau^{2}\right)\right)$ and the fundamental matrix solution in the form

$$
\Phi(t, \tau)=\exp \left(\frac{1}{2}\left(t^{2}-\tau^{2}\right)\right)\left[\begin{array}{ll}
1 & 0 \\
t-\tau & 1
\end{array}\right]
$$

Solution to 5. The solution is similar to the problem 4.

$$
\begin{align*}
& x^{\prime}=p(t) x+g(t) \tag{1}\\
& \mathbb{P}\left(t, t_{0}\right)=\int_{t_{0}}^{t} p(s) d s \\
& x(t)=\exp \left\{\mathbb{P}\left(t, t_{0}\right)\right\} x_{0}+\int_{t_{0}}^{t} \exp \{\mathbb{P}(t, s)\} g(s) d s \\
& x\left(t_{0}\right)=x_{0} \\
&\left\{\begin{array}{ll}
x_{1}^{\prime}=x_{1}+t x_{2} \\
x_{2}^{\prime}=2 x_{2}
\end{array} \quad . x^{\prime}=A x, A=\left[\begin{array}{cc}
1 & t \\
0 & 2
\end{array}\right]\right. \\
& \Phi(t, \tau)=\left(\pi_{1}(t, \tau), \pi_{2}(t, \tau)\right) \\
& \frac{\partial}{\partial t} \pi_{1}=A \pi_{1} ; \quad \frac{\partial}{\partial t} \pi_{2}=A \pi_{2}
\end{align*}
$$

$\pi_{1}(\tau, \tau)=\left[\begin{array}{l}1 \\ 0\end{array}\right], \pi_{2}(\tau, \tau)=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
We solve first the equation for $x_{2}(t)$ with initial data $x_{2}(\tau)$:

$$
x_{2}(t)=x_{2}(\tau) \exp (2(t-\tau))
$$

and then the equation for $x_{1}(t)$ with initial data $x_{1}(\tau)$ and substituting the solution for $x_{2}(t)=x_{2}(\tau) \exp (2(t-\tau))$ into the right hand side of the equation, both accoring to the formula in (1)

$$
\begin{aligned}
x_{1}(t)= & x_{1}(\tau) \exp (t-\tau)+\int_{\tau}^{t} \exp (t-s)\left[s x_{2}(\tau) \exp (2(s-\tau))\right] d s \\
= & x_{1}(\tau) \exp (t-\tau)+x_{2}(\tau) \exp (t-2 \tau) \int_{\tau}^{t} \exp (s) s d s= \\
& \left\{\int_{\tau}^{t} \exp (s) s d s=t e^{t}-\tau e^{\tau}-\left(e^{t}-e^{\tau}\right)\right\} \\
= & x_{1}(\tau) \exp (t-\tau)+x_{2}(\tau)\left(e^{t-\tau}-\tau e^{t-\tau}-e^{2(t-\tau)}+t e^{2(t-\tau)}\right)
\end{aligned}
$$

and substitute particular initial data for $\pi_{1}(t, \tau), \pi_{2}(t, \tau)$:

$$
\Phi(t, \tau)=\left[\begin{array}{ll}
\exp (t-\tau) & \exp (t-\tau)(1-\tau)+\exp (2(t-\tau))(t-1) \\
0 & \exp (2(t-\tau))
\end{array}\right]
$$

Solution to 6.

Suppose that every solution of $x^{\prime}=A(t) x$ is bounded for $t \geq 0$ and let $\Psi(t)$ be a fundamental matrix solution. Prove that $\Psi^{-1}(t)$ is bounded for $t \geq 0$ if and only if the function $t \rightarrow \int_{0}^{t} \operatorname{tr} A(s) d s$ is bounded from below. Hint: The inverse of a matrix is the adjugate of the matrix divided by its determinant, namely $\Psi^{-1}(t)=[\operatorname{det}(\Psi(t))]^{-1}[\operatorname{Adj}(\Psi(t))]$. The adjugate $\operatorname{Adj}(B)=$ $(\widetilde{B})^{T}$ where the matrix \widetilde{B} is a matrix of the same size as B with elements in $\widetilde{B}_{i j}$ calculated as $n-1$ dimentional determinants of the matrix B with eliminated i-th row and j-th column times $(-1)^{i+j}$. See http://en.wikipedia.org/wiki/Adjugate_matrix

The fact that all solutions to the ODE are bounded for $t \geq 0$ implies that all elements in $\Psi(t)$ are bounded for $t \geq 0$ and therefore all elements of $\operatorname{Adj}(\Psi(t))$ are bounded for $t \geq 0$ since they consist of sums of products of bounded elements in $\Psi(t)$ times ± 1. It implies that $\Psi^{-1}(t)$ is bounded (has bounded elements) for $t \geq 0$ if and only if $[\operatorname{det}(\Psi(t))]^{-1}$ is bounded that is equivalent to that $|\operatorname{det}(\Psi(t))|$ is bounded from below for for $t \geq 0$. Abel's formula gives that $\operatorname{det}(\Psi(t))=$ $\operatorname{det}(\Psi(0)) \exp \left(\int_{0}^{t} \operatorname{tr} A(s) d s\right)$ and that $|\operatorname{det}(\Psi(t))|=|\operatorname{det}(\Psi(0))| \exp \left(\int_{0}^{t} \operatorname{tr} A(s) d s\right)>a>0$, (bounded from below) if and only if $\ln (|\operatorname{det}(\Psi(0))|)+\left(\int_{0}^{t} \operatorname{tr} A(s) d s\right)>\ln a$ or

$$
\left(\int_{0}^{t} \operatorname{tr} A(s) d s\right)>\ln a-\ln (|\operatorname{det}(\Psi(0))|)
$$

It implies that $|\operatorname{det}(\Psi(t))|$ is bounded from below if and only if $\int_{0}^{t} \operatorname{tr} A(s) d s$ is bounded from below for $t \geq 0$ (cannot go to $-\infty$ with $t_{k} \rightarrow+\infty$ for some for some sequence of times $\left\{t_{k}\right\}_{k=1}^{\infty}$).

Solution to 9.
Abel's formula for fundamental matrix solution is $\operatorname{det}(\Psi(t))=\operatorname{det}(\Psi(0)) \exp \left(\int_{0}^{t} \operatorname{tr} A(s) d s\right)$. For
$\operatorname{det}(\exp (t A))=\operatorname{det}(I) \exp \left(\int_{0}^{t} \operatorname{tr} A d s\right)=\exp (t \operatorname{tr} A)$
$\operatorname{det}\left((I+\varepsilon A)+O\left(\varepsilon^{2}\right)\right)=\operatorname{det}\left((I+\varepsilon A)+O\left(\varepsilon^{2}\right)-\exp (\varepsilon A)+\exp (\varepsilon A)\right)=\operatorname{det}\left(\exp (\varepsilon A)+O\left(\varepsilon^{2}\right)\right)=\operatorname{det}(\exp (\varepsilon \operatorname{tr} A))+O\left(\varepsilon^{2}\right)$ $=\exp (\varepsilon \operatorname{tr} A)+O\left(\varepsilon^{2}\right)=1+\varepsilon \operatorname{tr}(A)+O\left(\varepsilon^{2}\right)$.
One can also give a direct proof considering an expansion of $\operatorname{det}\left((I+\varepsilon A)+O\left(\varepsilon^{2}\right)\right)$ according to the addition rool for determinants and observing that the only terms of order zero and one in $\varepsilon \rightarrow 0$ in the determinant are 1 and $\varepsilon A_{i i}$. Adding the last ones leads to $\varepsilon \operatorname{tr}(A)$.

Solution to 10.

Consider the flow $\phi(t, x)$ corresponding to the autonomous equation $y^{\prime}=f(y), y \in \mathbb{R}^{n}$ mapping the domain Ω to the domain as $\Omega_{t}=\{y=\phi(t, x), x \in \Omega\}$ where y is the solution to the $\operatorname{ODE} y^{\prime}=f(y)$ with initial data $y(0)=x \in \Omega$.

Show that $\frac{d}{d t}\left(\operatorname{Vol}\left(\Omega_{t}\right)\right)=\int_{\Omega_{t}} \operatorname{div}(f) d y$. Hint: use the result of Ex.9.
$\left(\operatorname{Vol}\left(\Omega_{t}\right)\right)=\int_{\Omega_{t}} d x$
Considering derivative of the integral is useful to have the integration over a fixed domain and function under the integral depending on time. To implement this idea we introduce a change of variables such that the domain of integration for time t coinsides with the "initial" domain Ω_{0} and
$\left(\operatorname{Vol}\left(\Omega_{t}\right)\right)=\int_{\Omega_{t}} d x=\int_{\Omega_{0}}\left|\operatorname{det}\left[\frac{D \phi(t, x)}{D x}\right]\right| d x$
Consider this integral for $t \rightarrow 0$.
$\frac{D}{D x} \phi(t, x)=\frac{D}{D x}\left[I x+t f(0, x)+O\left(t^{2}\right)\right]=\left[I+t \frac{D}{D x} f(0, x)+O\left(t^{2}\right)\right]$, for $t \rightarrow 0$
$\operatorname{det}\left[\frac{D}{D x} \phi(t, x)\right]=\operatorname{det}\left[I+t \frac{D}{D x} f(0, x)+O\left(t^{2}\right)\right]=1+t \operatorname{tr}\left[\frac{D}{D x} f(0, x)\right]+O\left(t^{2}\right) \geq 0$, for $t \rightarrow 0$
and $\left|\operatorname{det}\left[\frac{D \phi(t, x)}{D x}\right]\right|=\operatorname{det}\left[\frac{D}{D x} \phi(t, x)\right]$
$\operatorname{tr}\left[\frac{D}{D x} f(0, x)\right]=\operatorname{div}(f(0, x))$
$\frac{d}{d t}\left(\operatorname{Vol}\left(\Omega_{t}\right)\right)_{t=0}=\int_{\Omega_{0}} \operatorname{div}(f(0, x)) d x$
The same argument works naturally for any time t.

