Lecture notes on non-linear ODEs: limit sets (attractors), positively
invariant sets, periodic solutions, limit cycles.

Plan (continuation after existence and maximal solutions)

e Semi - orbits. Limit sets. p. 142. Positively (negatively) invariant sets
p. 142.

e Existence of an equilibrium point in a compact positively invariant set.
Theorem 4.45, p. 150.

o Planar systems. Periodic orbits. Poincare-Bendixson theorem. (only
idea of the proof is discussed) Theorem 4.46, p. 151.

e Bendixson’s criterion on non existence of periodic solutions.(after lecture
notes)

e First integrals and periodic orbits. Limit cycles. §4.7.2.

0.1 Introduction to limit sets and their properties.

We consider flows or dynamical systems corresponding to autonomous differential equations

&= f(z), f:G—RY, 2(0)=¢ (1)

with f locally Lipschitz and denote by ¢(t, {) the transition mapping or local flow generated
by f. For £ € G let I¢ = (g, we) denote the maximal interval - the interval of existence of
maximal solution to (1).

Definition. (Positive semi-orbit)

We denote by O(&) the orbit of the solution to (1), 0(§) = {z(t) : t € (ag,we)}.

We define the positive semi-orbit O (§) = {x(t) : t € [0,we)} of € - for future, and nega-
tive semi-orbit (for the past) O(§) = {z(t) : t € (a¢, 0]} of £ - for the past.

Definition. (Limit point of ¢)

e A point z € RY is called an w - limit point of £ (or it’s positive semi-orbit O, (£) or
it’s orbit O(&)) if there is a sequence of times {t,,} € [0,w¢) tending to the "maximal time

in the future", t,, /" we such that ¢(t,,&) — z asn — oo



e Similarly a point z € RY is called an « - limit point of ¢ (or it’s negative semi-orbit
O_(&) or it’s orbit O(§)) if there is a sequence of times {¢,} € [ag, 0] tending to the "minimal
time in the past", ¢, \, a¢ such that p(t,,£) — z as n — oo.

Definition. (w - limit set)

The w - limit set Q(£) of & (or it’s positive semi-orbit O, (£) or it’s orbit O(£)) is the set
of all it’s w- limit points (in future)

Definition

The « - limit set () of £ (or it’s negative semi-orbit O_(€) or it’s orbit O(&)) is the set
of all it’s a- limit points (in the past).

Definition. (Positively invariant set)

A set U C @ is said to be positively invariant under the local flow ¢ generated by f if for
each starting point £ € U from U the corresponding positive semi - orbit O, (&) is contained
inU.

It means that all trajectories x(t) starting in U stay in U as long as they exist in future.

One defines sets negatively invariant similarly, but with respect to the past.

Definition

One also says that the set U is just invariant with respect to the flowm ¢(t, ) if O(§) C U
for all £ € U. It means that all trajectories going through ¢ belong to U both in the "whole
past" and in the "whole future".

We know that compact positively invariant sets include trajectories that have "infinite"
maximal existence time in the future: JN[0, 00). It makes it meaningfull to investigate limit
sets of trajectories that are contained especially in compact positively invariant sets.

The first step in this kind of investigation is to identify possibly small positively invariant
sets. The second step is to classify and to identify w - limit sets that can be contained there,
and that are actually contained there for a particular system.

One fundamental fact about positively invariant sets is the following.

Theorem 4.45. p. 150, L&R.

Let C C G be non-empty, convex and compact. If C' is positively invariant under the

flow (¢, &), then C contains at least one equilibrium point for the corresponding ODE.



0.2 Methods of hunting positively - invariant sets

A system of ODEs has naturally many positively - invariant sets, for example the whole
domain G is always a positively - invariant set, but it is not very interesting. We like to find
possibly narrow invariant sets showing more precisely where trajectories or solutions to the
equation tend when ¢ tends to the upper bound of the maximal time interval.

A general idea that is used to answer many questions about behaviour of solutions
(trajectories) to ODEs, is the idea of test functions. One checks if the velocities f(z)
are directed inside or outside with respect to the sets like Q@ = {z € U :V(z) < C} or
Q ={z €U :V(x) > C} defined by some simple test functions V : U — R, U C G. A more
refined variant of this idea by Lyapunov is to find test a function that is monotone along
the trajectories ¢(t, ) of the equation. The advantage of the idea with test functions is that

one does not need to solve the equation to use it.
How to find a positively - invariant set?

Method 1. We find a test function V'(x) that has some level sets 0Q = {z : V(z) = C}
that are closed curves (or surfaces in higher dimensions) enclosing a bounded domain Q).
Typical examples are V(z,y) = z* + y?=R? - circle or radius R, or V(z,y) = z—i + Z—jzl
- ellipse, or more complicated ones as V(x,y) = 2% + ay? - smoothed rectangle shape or
squeezed ellipse, V(z,y) = 22 + xy + y? = C - ellipse rotated in 7/4 and having axes A and
B related as A/B = V3ete.

e To show that a particular level set d@) bounds an positively - invariant set () we check
the sign of the directional derivative of V' along the velocity in the equation ' = f(x):
Vi(z) = (VV - f) () for all points on the level set {V(x) = C'} for a particular constant C'.

e The sign of V() shows if the trajectories go to the same side of the level set as the
gradient VV' (if V(z) > 0) or to the opposite side (if Vy(x) < 0).

e Then if V(z) is rising for x going out of @), and V¢(x) < 0 then the domain () inside
this level set 0Q) (curve in the plane case) will be positively - invariant. Similarly if V(x) is
decreasing out of this level set, and Vy(z) < 0 on the level set Q) then the domain () inside

this level set will be positively - invariant.



In the opposite case the complement to @ that is RV\(Q will be positively - invariant
and trajectories ¢(t, &) starting in this complement: £ € RV\Q will never enter Q.

First integrals. A very particular case of test functions are functions that are constant
on all trajectories ¢(t, €) of the system. It means that £V (p(t,£)) = Vy(z) = 0. Usually but
not always, such test functions have the meaning of the total energy in the system. In this
case all level sets of the first integral are invariant sets, because velocities f(z) are tangent
vectors to the level sets in this case.

Method 2. If it is difficult to guess a simple test function giving one closed formula for
the boundary of an positively - invariant set as in the Method 1, then one can try to identify
a boundary for an positively - invariant set as a curve (or a surface in higher dimensions)
consisting of a number of simple peaces, for example straight segments.

The simplest positively - invariant set of such kind would be a rectangle (a rectangular
box in higher dimensions) with sides parallel to coordinate axes. Then to check that this
rectangle is an positively - invariant one needs just to check the sign of x or y - components
of f(z) on these segments, showing that trajectories go inside or outside of the rectangle.
We had such example in the first home assignment.

Application to Poincare Bendixson theorem

One searchs often positively - invariant sets with special properties. For example to apply
the Poincare-Bendixson theorem formulated later one needs to find an positively - invariant

set without equilibrium points.



Example

Consider the system

v = —y+ fr)x

y = z+f(r)y

where r = /22 + y2. We will try to find an explicit expression for the corresponding
flow by introducing polar coordinates x = cos(0)r, y = sin(f)r. We differentiate r(t) using

expressions for r and for 2/, 3/ in the equation, and arrive to following formulas:

(7“2)/ = 2r' = (2% +r?) = 222’ + 2yy/

= 2x(—y+ f(r)x) + 2y (z+ f(r)y) = 2f(r) (x2 + y2) = 2f(r)r?

Therefore:

The equation for the polar angle 6 can be derived by differentiating tan(f):

;o Ly _yz—2ly
(tan (6))" = COS2(9)9 B (az) L
P4 fr)ay — (=P 4 fr)ay) 2P 4yt ]
a 2 22 cos?é
Therefore
0 =1

The equation for r(¢) can be solved by integration.Each positive root r, to f(r) corrsponds
to a periodic orbit r(t) = const = r(0) = r,., 6(t) =6(0) +1¢

This periodic orbit will attract trajectories, that start nearby if f'(r.) < 0 (will be an w
- limit set Q(§) for points & close to the circle r = r,). If r, is a root of f where the first
term in Taylor series is a(r — r,)? with a > 0, then nearby trajectories will be attracted to
the periodic orbit from inside, and will run away from the periodic orbit from the outside of

it.



Exercise 4.16
Let f: R? — R? be given by
f(z) = f(21,22) == (22 + 21 (1 — ||2'||2}f —21 + 23(1 — ||f"='||2})-

Show that f generates a local flow ¢: D — R? given by

_ _1/2
o(t.€) = (€1 + (1 - €112)e2) """ Rt)e,
where the function R: B — R**? is given by
cost  sint
Rm;:tﬁm mﬂ) ViR (4.27)

(and so R(t)¢ is a clockwise rotation of £ through t radians) and
D:={(t,¢) e Rx R*: ¢ + (1 - [|[P)e > 0}.

(Hint. Show that, for £ = (£,&) # 0, the initial-value problem (4.25)
may be expressed — in polar coordinates — as

#(t) = r(t)(1—r2(1)), 6(t)=—1, (r(0),6(0)) = (r°,6°),

where 70 = ||£]|, r% cos 8 = &, and r%sinf° = &,.)

Solution. The equations in polar form follow from the general argument above.

We solve the equation for r :

d
d—:; = r(1—-1?
dr
— = dt
r(1—r?)
1 1 1 1

r(l—7r2) v 2(0r+1) 2(r—1)




dr B 1 -
/r(l_Tz) = lnr 2111 (r*=1)
In(r’—1) = t+C

C = g S (5~ )
o= g1 (2= 1) - (el -y (- ) = ¢

exp(t) = exp (lnr — %ln (r*—1) —In[¢] + = ln (1€ - 1))

rooAJIEr -1
rr—1 [
(-1 ¢
rr (g -1)
(r2=1)1¢]* = r*(|¢]* — 1) exp(—2¢)
PP+ (1— |6 exp(=2t) = [¢
2 45
(1€]* + (1 — [¢]*) exp(—21))
€]

\/(|£|2 — 1 — [ exp(—2t))

= exp(t)

= exp(—2t)




Example 4.37

Let f: R? — R? be as in Exercise 4.16, the generator of the local flow

p: D =R (1,6) = o(t,€) = (6] + (1 - lEI)e=) > R(2)E
where R : R — R%*2 is defined by (4.27). The domain D of ¢ is
D = {(t,¢) e R x R*: [|¢]* + (1 — [|¢]|*)e~>* > 0}.

Let A be the open unit disc in R2, that is, A = {(z1,22) € R?: 22 + 22 < 1}.

The aims of this example are (i) to show that the sets {0}, A, A and R?\ A
are invariant, and (ii) to find, for every ¢ € R2, the associated w and a-limit
set.

Since, for each ¢ € R, R(t) is an orthogonal matrix (representing a rotation
through ¢ radians), we have that ||R(¢)¢]| = €] for each ¢ € R?, a fact which
will be used freely in the arguments below.

Case 1. If £ = 0, then (t,£) = 0 for all ¢ € I = R and thus the set {0} is
invariant and

A(£) = 0() = 2(€) = {0}
Case 2. If ||£]| = 1, then, for all ¢ € I = R, ¢(t,£) = R(t)¢ and thus, in
particular, [[¢(t,&)|| = 1. We conclude that dA is invariant and

A(€) = O(¢) = Q(€) = DA,

Case 3. Assume 0 < ||£]| < 1. Then |[[¢(t,€)|| < 1 for all ¢t € I = R, showing
that A is invariant. Furthermore, let z € 90A be arbitrary and let T" > 0 be
such that R(T)¢ = |£||z. Define the sequence (¢,,) by t,, ;=T + 2nxw. Then

Pltn.€) = (€12 + (1= [€))e=2) "2 RIT)E — = as n— oo,



and so z € (2(¢). Since z € A is arbitrary, we have 0A C 2(£). Moreover,
o (2, €)
points, showing that 2(£) = 9A. Since ||¢(t,€)|| — 0 as ¢ — —oo, it follows
that A(¢) = {0}.

Case 4. Finally, consider the remaining case wherein [|£|| > 1. Here (the only

— 1 as t — oo, and thus it is clear that there are no other w-limit

case in which I¢ # R). the maximal interval of existence I¢ is given by [ =

(ag , 00), where
a¢ = In (\/TETZ = 1/€]l) < 0.

Since [[p(t,&)|| > 1 for all t € I¢, we see that R*\ A is invariant. Moreover,
by the same argument as used in Case 3, we find that 2(¢) = 0A. Finally,
|o(tn. &)|| — oo as t — ag, and so we may conclude that A(¢) = 0. A

Calculation of ag is given here:

I + (1=l e = 0

[
lell* —1
= et
(Ilel* = 1)
In|Y— "] = t=a;<0

€1l

0.3 Dynamical systems in plane. Poincare Bendixson theorem,

periodic solutions and more positively invariant sets..

Theorem. Poincare-Bendixson theorem.

if £ € G is such that the closure of the positive orbit O () is compact and is contained
in G and the w limit set (&) does not contain equilibrium points, then the w - limit set
2(¢) is an orbit of a periodic solution.

Definition

A periodic orbit v (an orbit corresponding to a periodic solution) is called an w - limit

cycle (or often just a limit cycle) if v = Q(€) for some £ € G\7y: ~ is an w-limit set for some



point & outside 7.
This definition excludes the case of phase portraits completely filled periodic orbits, as

the system z’ = —y, ¢y = x, having all orbits being circles arund the origin.

Hint to applications. It is easier to check that there is a compact positively invariant
set C C G C R? such that ¢ € C. If C contains no equilibrium points, then the w - limit set
(&) of £ is an orbit of a periodic solution.

On the other hand Theorem 4.45 suggests that any periodic orbit in plane encloses a
compact positively invariant set that includes at least one equilibrium point. It means that
a typical compact positively - invariant set for applying the Poincare-Bendixson theorem
should be a closed ring shaped set with at least one hole in the middle including a repelling

non stable equilibrium point.
Check list for application of the Poincare-Bendixson theorem.

e One starts with applying one of the two methods above to find a compact positively
- invariant set ) with at least one equilibrium point inside it. Such set () does not satisfy
conditions in the Poincare-Bendixson theorem yet.

e To identify holes around the equilibriums in the middle (one must find all such equi-
librium points at the end !), one needs often to find one more test function for each of them,
to show that trajectories do not enter a neighbourhood of each of the equilibriums.

e Alternatively one can use the linearization to show that this equilibrium is repeller
and therefore trajectories cannot enter some small neighbourhood of the equilibrium in the
middle of the set Q.

e One must check at the end that the positively invariant annulus (closed ring shaped
domain) does not include equilibrium points (no at the boundary either!). It is often simpler
to do it after carrying out estimates for V; by first checking zeroes of Vy(x) = 0 that contain
naturally all equilibrium points but is a scalar equation, and then checking zeroes of the

system f(z) = 0.

Example. Show that the system has a periodic solution.

10



Selution. First, we convert Equation (7) to a system of twb first-order
equations by setting x=z and y=_Z. Then,

dx _ & _ 252

ar =y, @ x+(1=x*=2y)y. (8)
Next, we try and find a bounded region R in the x —y plane, containing no
equilibrium points of (8), and having the property that every solution x(r),
y(1) of (8) which starts in R at time ¢ = r,, remains there for all future time
t 2 ty. It can be shown that a simply connected region such as a square or
disc will never work. Therefore, we try and take R to be an annulus
surrounding the origin. To this end, compute

g(x’ﬂwz)_ dx

dy
|\ | =x g g ===,

and observe that 1—x®—2y? is positive for x*+y?< 1 and negative for
x 1+ y?*> 1. Hence, x* (") + »*(1) is increasing along any solution x(r), y(f)
of (8) when x*+y*< j and decreasing when x*+y?> 1. This implies that
any solution x(f), y(f) of (8) which starts in the annulus 3 <x*+y* <1 at
time f=t, will remain in this annulus for all future time ¢ > f5. Now, this
annulus contains no equilibrium points of (8). Consequently, by the
Poincaré-Bendixson Theorem, there exists at least one periodic solution
x(1), ¥(1) of (8) lying entirely in this annulus, and then z=x(¢) is a nontri-
vial peniodic solution of (7).

11



Example. Arrowsmith-Place. One can instead of the analytical approach shown
below, use a more geometric argument, based on considering the curves const = 3z% + 223

It is demonstrated later for the Exercise 4.21.

Example 3.9.1. Show that the phase portrait of
X=%(1=3x2-2%*)+x=0

has a limit cycle,

Solution. The corresponding first-order system is

j:l = X2, f: = _xl + xz{l - 3:{'? “2}5%}, (3.?4}

which becomes
F=rsin?6(1 —3r? cos? 0 — 2r2 sin? 6) (3.75)
0 = —1+4sin20(1 — 3r2 cos? 6 — 2r2 sin? 8) (3.76)

in polar coordinates. Observe:
(@) Equation (3.75) with r = I gives
F=§sin’6(1 —Lcos? ) >0 (3.77)

with equality only at 8 =0 and n. Thus, {x|r > I} is positively
invariant;
(b) Egquation (3.75) also implies that
F< rsin®@(1 =2r).

Thus forr=1/ ,.,-"2, ¢ < ( with equality only at #=10 and m. Thus,

{x|r < 1//2} is positively invariant.

Now (a)and (b) imply that the annular region {x|} <r < 1_,’,,;"2} is
positively invariant and, since the only fixed point of (3.74) is at the
origin, we conclude there is a limit cycle in the annulus ]

12



As Theorem 4.45 and examples considered before suggests the positively invariant set
we look for must have a shape of annulus with a hole in the middle containing at least
one equilibrium point. The next Proposition 4.56, p. 165 gives a particular hint how to
find the "hole" for such an annulus domain using the techniques of stability by linearization

(Grobman-Hartman theorem) that we studied earlier.

Proposition 4.56

Let €' C G be a compact set that is positively invariant under the local flow
@ generated by (4.39). Assume that 0 is an interior point of €' and is the only
equilibrium in C. Assume further that f is differentiable at 0. Write A =
(Df)(0) with spectrum o(A) = {A1, A2}. If ReA; > 0 for ¢ = 1,2, then there
exists at least one w-limit cycle in C.

Proof

By positive invariance of C, the positive semi-orbit O (£) of every £ € C' is
contained in C'. Therefore, the closure of O™ (£) is a compact subset of G' and so
R, C I, for every £ € C. The hypotheses, together with Theorem 5.33 (a result
to be established in the next chapter), ensure that the equilibrium 0 is repelling
in the sense it has a neighbourhood U such that U is contained in C and, for
each £ € U\{0}, there exists 7 € R, such that ©(¢t,£) € U for all £t > 7. Let
& € U be arbitrary. Then 2(¢) € C'\U and so contains no equilibrium points.
By the Poincaré-Bendixson theorem (Theorem 4.46), it follows that (2(£) is the
orbit of a periodic point. Finally, since & is in U, we have O1(£) # 2(£) and
so we may conclude that (2(£) is an w-limit cycle. [

13



Example 4.57

Consider again the system given in Exercise 4.16, with G = R? and f: R? — R?
given by f(z) = f(z1,22) == (z2 + z1(1 — [|2]1?), —21 + 22(1 — ||2[|?)). Let C be
the closed unit disc {z € R2: ||z|| < 1}. Then

{z, f(2)) = [=lI*(1 = lI2lI) = 0 V= € 8C,

and so solutions starting in €' cannot exit C' in forwards time. Thus, the com-
pact set C' is positively invariant. Moreover, 0 is the unique equilibrium in '

a=ono= (" 1)

with spectrum o(A) = {1 4+ i,1 — i}. Therefore, by Proposition 4.56, we may
conclude the existence of a limit cycle in C'. This, of course, is entirely consis-
tent with Exercise 4.16 and Example 4.37, the conjunction of which shows (hy
explicit computation of the local flow) that the unit circle v = 9C is a periodic
orbit and coincides with the w-limit set £2(£) of every & with 0 < [|¢]| < 1. A

14



Exercise 4.21, p. 158

Consider the system 2’ = f(z1, 29) :

2y = 2+ 219(71, 22)
2y = —2z1+ 229(21, 22)

9(z1,20) = 3—|—221—zf—z§

Prove that the system has at least one periodic solution.

Solution.

Consider the test function V' (zy, z5) = (@)

21 20 + 219(21, 22)

VV - f(z1,22) =

22 —z1 + 229(21, 22)
= (21 +23) g(21,22) = (21 + 23) (34221 — 2] — 23)
= (4 - (1-2)"~2)

The circle 4 = (1 — z;)® + 22 has center in the point (1,0) and radius 2:

()

15§ 05
05

Inside this circle VV - f(z1, 22) > 0 outside this circle VV - f(z1, 25) < 0. Therefore as
it is easy to see from the picture, VV - f(z1, 22) > 0 on the circle 22 + 22 = 1 with center
in the origin, and VV - f(z1, 22) < 0 on the circle 2z} + 22 = 9 with center in the origin. The
ring shaped set C: 1 < r < 3 is a positively invariant compact set. The origin is the only
equilibrium point fo the system, because from the expression VV - f(z1, 20) = 12g(21, 22) it
follows that other equilibrium points must be on the circle g(z,2;) =0 =4 — (1 — 2)* —

2

z5. Substitution g(z1,22) = 0 into the system leads to the conclusion that there are no

equilibrium points on this circle.

15



Therefore the Poincare Bendixson theorem implies that there exists at least one periodic
orbit contained in the ring shaped set C.

Exercise.

Solve a similar problem for the function g(21, z) = 3 + 2120 — 22 — 22

Example 3.8.2. Find the limit cycles in the following systems and
give their types:

(@) F=rir—INr—2), #=1; (3.67)
(b) F=rir—1), (=1, (3.68)
Solution
(a) There are closed trajectories given by
rity=1, =1t and rir)=2, 0=1 (3.69)
Furthermore
f:a- 0, 0<r=<1
f-te:{], l<r<2 (3.70)
=0, r>2

The system therefore has two circular limit cycles: one stable (r = 1)
and one unstable {r = 2).

(b) System (3.68) has a single circular limit cycle of radius one.
However, ¢ is positive for 0 < r < 1 and r > 1, so the limit cycle is
semistable. O]

Counterexample: an annulus that is a region of attraction containing an at-

tracting equilibrium.

16



Fig. 3.25. Phase portrait for the system ¢ = r{l —r), # = sin 0.

17



Exercise. Rectangular positively invariant set

Consider the following system of ODEs :

= 10 ;ﬁé
y, = T (1 - 1—55{:2)

1. a) show that the point (z.,y,) with coordinates x, = 2 and y, = 5 is the only equilib-

rium point and is a repeller;

b) find a rectangle [0, a] x

0, 0] in the first quadrant z > 0, y > 0 bounded by coordinate

axes and by two lines parallel to them, that is a positively invariant set. Explain why

the system must have at least one periodic orbit in this rectangle.

Solution.
a) r, = 2 and y, = 5 is an equilibrium point:(1 — 25) = 0; and 10 — 2 — 22 =
10-2-8=0.
—4 + 822 -1 4=
The Jacobi matrix is A = =5 2“) ZH 1t is calculated as:
—=at 2z (z 2+1)2 t1 -5
4 1]
V(10 -z — 14::-@2): d + 8 (z 2+1) L
_43529:'1 Jdlz=2 y=5
5 32 [
_ —42+8(4) 2 -1 _ —4+% -1 _ 1.4
2 8
, — +2:c2( mp t+ 1 —34+2(4)2 +1
V(e (1 )= $ |
z?+1 x=2, y=5 5
—1+:+1 1.6
pu— 2 pu—
— —0.4
: . : 14 —16 . o
The Jacobi matrix in z,, y, is A = , characteristic polynomial: A\ — A+
1.6 —-04

2 =0,

o o [trace(A)]?> 1
trace(A) = 1 > 0, det(A4) = 2 > =52 = £

4

and it is a repeller, eigenvalues are:

18

M = 05++025—2 =

that corresponds to unstable spiral

0.5 + ivV1.75, Ay =



0.5 —+0.25 —2=0.5 —iV/1.75.

It implies that trajectories cannot enter a small open ball B((z., y«), €) with the center

in the equilibrium point (2,5) and some small radius .

b) Observe that the first quadrant is a positively invariant set. For y = 0 we have

#=10> 0 and for y =0 and x > 0 we have y/ =z > 0.
Observe also that 3 < 0 for y > 1+ 22 and > 0; < 0 for > 10 and y > 0.

It implies that the rectangle [0, 10] x [0, 101] is a positively invariant compact set. Ex-
cluding a small open ball B((z.,y.),c) with the center in the equilibrium point (2, 5)
and small radius e we get a positively invariant compact set [0, 10]x [0, 101] \ B((2+, ¥x), €)
without equilibrium points that according to the Poincare Bendixson theorem must in-

clude a periodic orbit.
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The following theorem gives a more complete description of the types of w - limit sets in

the plane R2.

Theorem 7.16 (generalized Poincaré-Bendixson). Let M be an open subset
of R? and f € CY(M,R?). Fizx € M, 0 € {£}, and suppose wy(x) # 0 is
compact, connected, and contains only finitely many fized points. Then one
of the following cases holds:

(i) wy(x) is a fized orbit.
(ii) wy(x) is a regular periodic orbit.
(ili) we(x) consists of (finitely many) fired points {x;} and non-closed
orbits y(y) such that wi(y) € {x;}.

Proof. If w,(x) contains no fixed points it is a regular periodic orbit by
Lemma 7.13. If ws(z) contains at least one fixed point x; but no regular
points, we have w,(z) = {1} since fixed points are isolated and w,(z) is
connected.

Suppose that w,(z) contains both fixed and regular points. Let y €
wy () be regular. We need to show that wy(y) consists of one fixed point.
Therefore it suffices to show that it cannot contain regular points. Let
2z € w+(y) be regular. Take a transversal arc Y containing z and a sequence
Yn — 2, Yn € Y(y) N X. By Corollary 7.10 v(y) C w,(x) can intersect X only
in y. Hence y, = 2 and v(y) is regular periodic. Now Lemma 7.14 implies
Y(y) = we(x) which is impossible since w, () contains fixed points. O
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Example. While we have already seen examples for case (i) and (ii) in
the Poincaré-Bendixson theorem we have not seen an example for case (iii).
Hence we consider the vector field
flz,y) = (y +a? - ar(y —1+ 2;1’2)) )
i 21+ y)a

First of all it is easy to check that the curves y = 1 — 222 and y = —1
are invariant. Moreover, there are four fixed points (0,0), (—1,—1), (1,—1),
and (% —1). We will chose o = % such that the last one is outside the
region bounded by the two invariant curves. Then a typical orbit starting
inside this region is depicted in Figure 7.9: It converges to the unstable fixed

point (0,0) as t -+ —oo and spirals towards the boundary as t - +oc0. In
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particular, its w. ((xp,yo)) limit set consists of three fixed points plus the
orbits joining them.

! 2
To prove this consider H(x,y) = z(1 + y) + % and observe that its
change along trajectories

H=2a(1 —y—2:)2*(1+ )
is nonnegative inside our region (its boundary is given by H(x,y) = %J
Hence it is straightforward to show that every orbit other than the fixed
point (0,0) converges to the boundary. o

0.4 Methods of hunting w - limit sets

0.5 How to find an w - limit set?

We put here this user guide about w - limit sets that refers to some notions that will be
discussed later in the course. You can come back to this text when corresponding notions
will be introduced.

w - limit sets live naturally inside w - invariant sets. In case one can find a very small w -
invarinat set the position and the size of the w - limit set inside it will be rather well defined.

Description properties of w - limit sets is the main and the most complicated problem
in the theory of dynamical systems. Even numerical investigation of limit sets in dimension
higher then 2 is rather complicated and needs advanced mathematical tools.

In autonomous systems the plane R? limit sets can be only of three types: a) equilibrium
points, b) periodic orbits, and c) closed curves consisting of finite number of
equilibrium points connected by open orbits. It is an extension of the Poincare-
Bendixson theorem.

The analytic identification or at least effective localization of w - limit sets is possible with
help of La Salle’s invariance theorem that will be studied later. It states that w - limit sets
are subsets of zero level sets of Vy(x) = (VV - f) (z) for appropriate test function (Lyapunov
function) V' (z) satisfying V;(z) < 0.

This theorem helps in particular to find w - limit sets that are asymptotically stable

equilibrium points, by a rather simple check of the behaviour of the velocity f(z) on the zero
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level set where V; (z) = 0.

One can also investigate asymptotically stable equilibrium points with help of so called
"strong" Lyapunov functions V' that satisfy V(x) < 0 for = # 0.

It is difficult in practice to find analytically w - limit sets in plane of two other types. It
is possible if one can find analytically a zero level set Vf_1 (0) of a test function V' that is
a closed curve in plane. Then this level set belongs to one of the two other types: periodic
orbit or a chain of equilibrium points connected by open orbits.

Such an analytic construction is not known for the equation with periodic orbit in the
second home assignment, despite the fact that special techniques were developed to show
that the periodic orbit there is unique.

If a system has first integrals: test functions having Vy(x) = 0 everywhere, then level sets
of first integrals give a good tool to identify w - limit sets because these level sets consist of
orbits and are because of that very narrow invariant sets. The existence of first integrals is
usually a sign that the energy of the system is preserved, that is a rather special situation.

The observations above show that in many practical situations we can find w - limit sets
that are asymptotically stable equilibrium points.

For systems in plane we can with help of Poincare Bendixson theorem also show that in
certain situations w - limit sets are orbits of periodic solutions but cannot give a formula for
them and cannot state how many they are.

w - ltmit sets in the plane that are more complicated than equilibrium points, is possible
to describe analytically in the case when for a Lyapunov test function V(x) the zero level
set Vf_1 (0) is a closed curve in the plane and the corresponding equation can be investigated

analytically.
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