
Lecture notes on non-linear ODEs: limit sets (attractors), positively

invariant sets, periodic solutions, limit cycles.

Plan (continuation after existence and maximal solutions)

� Semi - orbits. Limit sets. p. 142. Positively (negatively) invariant sets

p. 142.

� Existence of an equilibrium point in a compact positively invariant set.

Theorem 4.45, p. 150.

� Planar systems. Periodic orbits. Poincare-Bendixson theorem. (only

idea of the proof is discussed) Theorem 4.46, p. 151.

� Bendixson�s criterion on non existence of periodic solutions.(after lecture

notes)

� First integrals and periodic orbits. Limit cycles. §4.7.2.

0.1 Introduction to limit sets and their properties.

We consider �ows or dynamical systems corresponding to autonomous di¤erential equations

_x = f(x); f : G! RN ; x(0) = � (1)

with f locally Lipschitz and denote by '(t; �) the transition mapping or local �ow generated

by f . For � 2 G let I� = (��; !�) denote the maximal interval - the interval of existence of

maximal solution to (1):

De�nition. (Positive semi-orbit)

We denote by O(�) the orbit of the solution to (1); O(�) = fx(t) : t 2 (��; !�)g.

We de�ne the positive semi-orbit O+(�) = fx(t) : t 2 [0; !�)g of � - for future; and nega-

tive semi-orbit (for the past) O(�) = fx(t) : t 2 (��; 0]g o /f � - for the past.

De�nition. (Limit point of �)

� A point z 2 RN is called an ! - limit point of � (or it�s positive semi-orbit O+(�) or

it�s orbit O(�)) if there is a sequence of times ftng 2 [0; !�) tending to the "maximal time

in the future", tn % !� such that '(tn; �)! z as n!1
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� Similarly a point z 2 RN is called an � - limit point of � (or it�s negative semi-orbit

O�(�) or it�s orbit O(�)) if there is a sequence of times ftng 2 [��; 0] tending to the "minimal

time in the past", tn & �� such that '(tn; �)! z as n!1.

De�nition. (! - limit set)

The ! - limit set 
(�) of � (or it�s positive semi-orbit O+(�) or it�s orbit O(�)) is the set

of all it�s !- limit points (in future)

De�nition

The � - limit set 
(�) of � (or it�s negative semi-orbit O�(�) or it�s orbit O(�)) is the set

of all it�s �- limit points (in the past).

De�nition. (Positively invariant set)

A set U � G is said to be positively invariant under the local �ow ' generated by f if for

each starting point � 2 U from U the corresponding positive semi - orbit O+(�) is contained

in U .

It means that all trajectories x(t) starting in U stay in U as long as they exist in future:

One de�nes sets negatively invariant similarly, but with respect to the past.

De�nition

One also says that the set U is just invariant with respect to the �owm '(t; �) if O(�) � U

for all � 2 U . It means that all trajectories going through � belong to U both in the "whole

past" and in the "whole future".

We know that compact positively invariant sets include trajectories that have "in�nite"

maximal existence time in the future: J \ [0;1). It makes it meaningfull to investigate limit

sets of trajectories that are contained especially in compact positively invariant sets.

The �rst step in this kind of investigation is to identify possibly small positively invariant

sets. The second step is to classify and to identify ! - limit sets that can be contained there,

and that are actually contained there for a particular system.

One fundamental fact about positively invariant sets is the following.

Theorem 4.45. p. 150, L&R.

Let C � G be non-empty, convex and compact. If C is positively invariant under the

�ow '(t; �), then C contains at least one equilibrium point for the corresponding ODE.
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0.2 Methods of hunting positively - invariant sets

A system of ODEs has naturally many positively - invariant sets, for example the whole

domain G is always a positively - invariant set, but it is not very interesting. We like to �nd

possibly narrow invariant sets showing more precisely where trajectories or solutions to the

equation tend when t tends to the upper bound of the maximal time interval.

A general idea that is used to answer many questions about behaviour of solutions

(trajectories) to ODEs, is the idea of test functions. One checks if the velocities f(x)

are directed inside or outside with respect to the sets like Q = fx 2 U : V (x) � Cg or

Q = fx 2 U : V (x) � Cg de�ned by some simple test functions V : U ! R, U � G: A more

re�ned variant of this idea by Lyapunov is to �nd test a function that is monotone along

the trajectories '(t; �) of the equation. The advantage of the idea with test functions is that

one does not need to solve the equation to use it.

How to �nd a positively - invariant set?

Method 1. We �nd a test function V (x) that has some level sets @Q = fx : V (x) = Cg

that are closed curves (or surfaces in higher dimensions) enclosing a bounded domain Q.

Typical examples are V (x; y) = x2 + y2=R2 - circle or radius R; or V (x; y) = x2

a2
+ y2

b2
=1

- ellipse, or more complicated ones as V (x; y) = x6 + ay4 - smoothed rectangle shape or

squeezed ellipse, V (x; y) = x2 + xy + y2 = C - ellipse rotated in �=4 and having axes A and

B related as A=B =
p
3etc.

� To show that a particular level set @Q bounds an positively - invariant set Q we check

the sign of the directional derivative of V along the velocity in the equation x0 = f(x):

Vf (x) = (rV � f) (x) for all points on the level set fV (x) = Cg for a particular constant C.

� The sign of Vf (x) shows if the trajectories go to the same side of the level set as the

gradient rV (if V (x) > 0) or to the opposite side (if Vf (x) < 0).

� Then if V (x) is rising for x going out of Q, and Vf (x) < 0 then the domain Q inside

this level set @Q (curve in the plane case) will be positively - invariant. Similarly if V (x) is

decreasing out of this level set, and Vf (x) < 0 on the level set @Q then the domain Q inside

this level set will be positively - invariant.
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In the opposite case the complement to Q that is RNnQ will be positively - invariant

and trajectories '(t; �) starting in this complement: � 2 RNnQ will never enter Q.

First integrals. A very particular case of test functions are functions that are constant

on all trajectories '(t; �) of the system. It means that d
dt
V ('(t; �)) = Vf (x) � 0. Usually but

not always, such test functions have the meaning of the total energy in the system. In this

case all level sets of the �rst integral are invariant sets, because velocities f(x) are tangent

vectors to the level sets in this case.

Method 2. If it is di¢ cult to guess a simple test function giving one closed formula for

the boundary of an positively - invariant set as in the Method 1, then one can try to identify

a boundary for an positively - invariant set as a curve (or a surface in higher dimensions)

consisting of a number of simple peaces, for example straight segments.

The simplest positively - invariant set of such kind would be a rectangle (a rectangular

box in higher dimensions) with sides parallel to coordinate axes. Then to check that this

rectangle is an positively - invariant one needs just to check the sign of x or y - components

of f(x) on these segments, showing that trajectories go inside or outside of the rectangle.

We had such example in the �rst home assignment.

Application to Poincare Bendixson theorem

One searchs often positively - invariant sets with special properties. For example to apply

the Poincare-Bendixson theorem formulated later one needs to �nd an positively - invariant

set without equilibrium points.
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Example

Consider the system

x0 = �y + f(r)x

y0 = x+ f(r)y

where r =
p
x2 + y2: We will try to �nd an explicit expression for the corresponding

�ow by introducing polar coordinates x = cos(�)r, y = sin(�)r. We di¤erentiate r(t) using

expressions for r and for x0, y0 in the equation, and arrive to following formulas:

�
r2
�0

= 2rr0 = (x2 + r2)0 = 2xx0 + 2yy0

= 2x(�y + f(r)x) + 2y (x+ f(r)y) = 2f(r)
�
x2 + y2

�
= 2f(r)r2

Therefore:

r0 = f(r)r

The equation for the polar angle � can be derived by di¤erentiating tan(�):

(tan (�))0 =
1

cos2(�)
�0 =

�y
x

�0
=
y0x� x0y
x2

=
x2 + f(r)xy � (�y2 + f(r)xy)

x2
=
x2 + y2

x2
=

1

cos2 �

Therefore

�0 = 1

The equation for r(t) can be solved by integration:Each positive root r� to f(r) corrsponds

to a periodic orbit r(t) = const = r(0) = r�, �(t) = �(0) + t

This periodic orbit will attract trajectories, that start nearby if f 0(r�) < 0 (will be an !

- limit set 
(�) for points � close to the circle r = r�). If r� is a root of f where the �rst

term in Taylor series is a(r � r�)2 with a > 0, then nearby trajectories will be attracted to

the periodic orbit from inside, and will run away from the periodic orbit from the outside of

it.
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Solution. The equations in polar form follow from the general argument above.

We solve the equation for r :

dr

dt
= r(1� r2)

dr

r(1� r2) = dt

1

r(1� r2) =
1

r
� 1

2 (r + 1)
� 1

2 (r � 1)
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Z
dr

r(1� r2) = ln r � 1
2
ln
�
r2 � 1

�
ln r � 1

2
ln
�
r2 � 1

�
= t+ C

C = ln j�j � 1
2
ln
�
j�j2 � 1

�
ln r � 1

2
ln
�
r2 � 1

�
�
�
ln j�j � 1

2
ln
�
j�j2 � 1

��
= t

exp(t) = exp

�
ln r � 1

2
ln
�
r2 � 1

�
� ln j�j+ 1

2
ln
�
j�j2 � 1

��
rp
r2 � 1

q
j�j2 � 1
j�j = exp(t)

(r2 � 1)
r2

j�j2�
j�j2 � 1

� = exp(�2t)�
r2 � 1

�
j�j2 = r2

�
j�j2 � 1

�
exp(�2t)

r2(j�j2 +
�
1� j�j2

�
exp(�2t)) = j�j2

r2 =
j�j2

(j�j2 +
�
1� j�j2

�
exp(�2t))

r =
j�jq

(j�j2 � 1� j�j2 exp(�2t))
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Calculation of �� is given here:

k�k2 +
�
1� k�k2

�
e�2t = 0

k�k2

k�k2 � 1
= e�2t

= et

ln

0@
q�
k�k2 � 1

�
k�k

1A = t = �� < 0

0.3 Dynamical systems in plane. Poincare Bendixson theorem,

periodic solutions and more positively invariant sets..

Theorem. Poincare-Bendixson theorem.

if � 2 G is such that the closure of the positive orbit O+(�) is compact and is contained

in G and the ! limit set 
(�) does not contain equilibrium points, then the ! - limit set


(�) is an orbit of a periodic solution.

De�nition

A periodic orbit 
 (an orbit corresponding to a periodic solution) is called an ! - limit

cycle (or often just a limit cycle) if 
 = 
(�) for some � 2 Gn
: 
 is an !-limit set for some
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point � outside 
.

This de�nition excludes the case of phase portraits completely �lled periodic orbits, as

the system x0 = �y, y0 = x, having all orbits being circles arund the origin.

Hint to applications. It is easier to check that there is a compact positively invariant

set C � G � R2 such that � 2 C. If C contains no equilibrium points, then the ! - limit set


(�) of � is an orbit of a periodic solution.

On the other hand Theorem 4.45 suggests that any periodic orbit in plane encloses a

compact positively invariant set that includes at least one equilibrium point. It means that

a typical compact positively - invariant set for applying the Poincare-Bendixson theorem

should be a closed ring shaped set with at least one hole in the middle including a repelling

non stable equilibrium point.

Check list for application of the Poincare-Bendixson theorem.

� One starts with applying one of the two methods above to �nd a compact positively

- invariant set Q with at least one equilibrium point inside it. Such set Q does not satisfy

conditions in the Poincare-Bendixson theorem yet.

� To identify holes around the equilibriums in the middle (one must �nd all such equi-

librium points at the end !), one needs often to �nd one more test function for each of them,

to show that trajectories do not enter a neighbourhood of each of the equilibriums.

� Alternatively one can use the linearization to show that this equilibrium is repeller

and therefore trajectories cannot enter some small neighbourhood of the equilibrium in the

middle of the set Q.

� One must check at the end that the positively invariant annulus (closed ring shaped

domain) does not include equilibrium points (no at the boundary either!). It is often simpler

to do it after carrying out estimates for Vf by �rst checking zeroes of Vf (x) = 0 that contain

naturally all equilibrium points but is a scalar equation, and then checking zeroes of the

system f(x) = 0.

Example. Show that the system has a periodic solution.
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Example. Arrowsmith-Place. One can instead of the analytical approach shown

below, use a more geometric argument, based on considering the curves const = 3x21 + 2x
2
2.

It is demonstrated later for the Exercise 4.21.
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As Theorem 4.45 and examples considered before suggests the positively invariant set

we look for must have a shape of annulus with a hole in the middle containing at least

one equilibrium point. The next Proposition 4.56, p. 165 gives a particular hint how to

�nd the "hole" for such an annulus domain using the techniques of stability by linearization

(Grobman-Hartman theorem) that we studied earlier.
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Exercise 4.21, p. 158

Consider the system z0 = f(z1; z2) :

z01 = z2 + z1g(z1; z2)

z02 = �z1 + z2g(z1; z2)

g(z1; z2) = 3 + 2z1 � z21 � z22

Prove that the system has at least one periodic solution.

Solution.

Consider the test function V (z1; z2) =
�
z21+z

2
2

2

�
.

rV � f(z1; z2) =

24 z1
z2

35 �
24 z2 + z1g(z1; z2)

�z1 + z2g(z1; z2)

35
=

�
z21 + z

2
2

�
g(z1; z2) =

�
z21 + z

2
2

� �
3 + 2z1 � z21 � z22

�
= r2(4� (1� z1)2 � z22)

The circle 4 = (1� z1)2 + z22 has center in the point (1; 0) and radius 2:

32.521.510.50-0.5-1-1.5-2-2.5-3

3

2.5

2

1.5

1

0.5
0

-0.5

-1

-1.5

-2

-2.5

-3

x

y

x

y

Inside this circle rV � f(z1; z2) > 0 outside this circle rV � f(z1; z2) < 0. Therefore as

it is easy to see from the picture, rV � f(z1; z2) � 0 on the circle z21 + z
2
2 = 1 with center

in the origin, and rV � f(z1; z2) � 0 on the circle z21 + z22 = 9 with center in the origin: The

ring shaped set C: 1 � r � 3 is a positively invariant compact set. The origin is the only

equilibrium point fo the system, because from the expression rV � f(z1; z2) = r2g(z1; z2) it

follows that other equilibrium points must be on the circle g(z1; z2) = 0 = 4 � (1� z1)2 �

z22 . Substitution g(z1; z2) = 0 into the system leads to the conclusion that there are no

equilibrium points on this circle.

15



Therefore the Poincare Bendixson theorem implies that there exists at least one periodic

orbit contained in the ring shaped set C.

Exercise.

Solve a similar problem for the function g(z1; z2) = 3 + z1z2 � z21 � z22

Counterexample: an annulus that is a region of attraction containing an at-

tracting equilibrium.
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Exercise. Rectangular positively invariant set

Consider the following system of ODEs :8<: x0 = 10� x� 4xy
1+x2

y0 = x
�
1� y

1+x2

�
1. a) show that the point (x�; y�) with coordinates x� = 2 and y� = 5 is the only equilib-

rium point and is a repeller;

b) �nd a rectangle [0; a]�[0; b] in the �rst quadrant x > 0, y > 0 bounded by coordinate

axes and by two lines parallel to them, that is a positively invariant set. Explain why

the system must have at least one periodic orbit in this rectangle.

Solution.

a) x� = 2 and y� = 5 is an equilibrium point:
�
1� 5

1+22

�
= 0; and 10 � 2 � 4�2�5

5
=

10� 2� 8 = 0.

The Jacobi matrix is A =

24 �4 y
x2+1

+ 8x2 y

(x2+1)2
� 1 �4 x

x2+1

� y
x2+1

+ 2x2 y

(x2+1)2
+ 1 � x

x2+1

35 . It is calculated as:
r
�
10� x� 4xy

1+x2

�
=

24 �4 y
x2+1

+ 8x2 y

(x2+1)2
� 1

�4 x
x2+1

35������
x=2; y=5

=

24 �455 + 8 (4) 5
25
� 1

�4 � 2
5

35 =
24 �4 + 32

5
� 1

�8
5

35 =
24 1: 4

�1: 6

35
r
�
x
�
1� y

1+x2

��
=

24 � y
x2+1

+ 2x2 y

(x2+1)2
+ 1

� x
x2+1

35������
x=2; y=5

=

24 �5
5
+ 2(4) 5

25
+ 1

�2
5

35
=

24 �1 + 8
5
+ 1

�2
5

35 =
24 1: 6

�0:4

35
The Jacobi matrix in x�, y� is A =

24 1:4 �1:6

1:6 �0:4

35, characteristic polynomial: �2��+
2 = 0,

trace(A) = 1 > 0, det(A) = 2 > [trace(A)]2

4
= 1

4
that corresponds to unstable spiral

and it is a repeller, eigenvalues are: �1 = 0:5 +
p
0:25� 2 = 0:5 + i

p
1:75, �2 =
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0:5�
p
0:25� 2 = 0:5� i

p
1:75.

It implies that trajectories cannot enter a small open ball B((x�; y�); ") with the center

in the equilibrium point (2; 5) and some small radius ":

b) Observe that the �rst quadrant is a positively invariant set. For y = 0 we have

_x = 10 > 0 and for y = 0 and x > 0 we have y0 = x > 0:

Observe also that _y < 0 for y > 1 + x2 and x > 0; _x < 0 for x > 10 and y > 0.

It implies that the rectangle [0; 10]� [0; 101] is a positively invariant compact set. Ex-

cluding a small open ball B((x�; y�); ") with the center in the equilibrium point (2; 5)

and small radius " we get a positively invariant compact set [0; 10]�[0; 101] nB((x�; y�); ")

without equilibrium points that according to the Poincare Bendixson theorem must in-

clude a periodic orbit.
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The following theorem gives a more complete description of the types of ! - limit sets in

the plane R2:
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0.4 Methods of hunting ! - limit sets

0.5 How to �nd an ! - limit set?

We put here this user guide about ! - limit sets that refers to some notions that will be

discussed later in the course. You can come back to this text when corresponding notions

will be introduced.

! - limit sets live naturally inside ! - invariant sets. In case one can �nd a very small ! -

invarinat set the position and the size of the ! - limit set inside it will be rather well de�ned.

Description properties of ! - limit sets is the main and the most complicated problem

in the theory of dynamical systems. Even numerical investigation of limit sets in dimension

higher then 2 is rather complicated and needs advanced mathematical tools.

In autonomous systems the plane R2 limit sets can be only of three types: a) equilibrium

points, b) periodic orbits, and c) closed curves consisting of �nite number of

equilibrium points connected by open orbits. It is an extension of the Poincare-

Bendixson theorem.

The analytic identi�cation or at least e¤ective localization of ! - limit sets is possible with

help of La Salle�s invariance theorem that will be studied later. It states that ! - limit sets

are subsets of zero level sets of Vf (x) = (rV � f) (x) for appropriate test function (Lyapunov

function) V (x) satisfying Vf (x) � 0.

This theorem helps in particular to �nd ! - limit sets that are asymptotically stable

equilibrium points, by a rather simple check of the behaviour of the velocity f(x) on the zero
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level set where Vf (x) = 0.

One can also investigate asymptotically stable equilibrium points with help of so called

"strong" Lyapunov functions V that satisfy Vf (x) < 0 for x 6= 0.

It is di¢ cult in practice to �nd analytically ! - limit sets in plane of two other types. It

is possible if one can �nd analytically a zero level set V �1f (0) of a test function V that is

a closed curve in plane. Then this level set belongs to one of the two other types: periodic

orbit or a chain of equilibrium points connected by open orbits.

Such an analytic construction is not known for the equation with periodic orbit in the

second home assignment, despite the fact that special techniques were developed to show

that the periodic orbit there is unique.

If a system has �rst integrals: test functions having Vf (x) = 0 everywhere, then level sets

of �rst integrals give a good tool to identify ! - limit sets because these level sets consist of

orbits and are because of that very narrow invariant sets. The existence of �rst integrals is

usually a sign that the energy of the system is preserved, that is a rather special situation.

The observations above show that in many practical situations we can �nd ! - limit sets

that are asymptotically stable equilibrium points.

For systems in plane we can with help of Poincare Bendixson theorem also show that in

certain situations ! - limit sets are orbits of periodic solutions but cannot give a formula for

them and cannot state how many they are.

! - limit sets in the plane that are more complicated than equilibrium points, is possible

to describe analytically in the case when for a Lyapunov test function V (x) the zero level

set V �1f (0) is a closed curve in the plane and the corresponding equation can be investigated

analytically.
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