
1 Lyapunov stability theory §5.1

The pioneering work by Lyapunov on stability theory where both the idea of linearization and the idea of test

functions were introduced and developed, was his Ph.D thesis published in 1892 and translated to French

in 1907.

Consider an autonomous system x0 = f(x) with f : G! RN , G � RN open. We suppose that f is a

locally Lipschitz continuous function, so the existence and uniqueness of maximal solutions to I.V.P. are

valid.

We repeat for convenience de�nitions of stable and unstable equilibrium points (considered here at the

origin to make it simpler to apply the construction with Lyapunov functions)

De�nition
An equilibrium point 0 2 G of the system is said to be stable if for each " > 0, there is � > 0 such

that for any � taken in the ball B(�; 0)=
�
� 2 RN ; j�j < �

	
the maximal solution x(t) = '(t; �) : I� ! G

on the maximal interval I� with initial data x(0) = � and 0 2 I� will stay in the ball B("; 0): k'(t; �)k < "

for all t 2 I� \ R+. In fact R+ � I� in this case.

De�nition
The function V : U ! R , U - open, containing the origin 0 2 U , is said to be positive de�nite in U ,

if V (0) = 0 and V (z) > 0 for 8z 2 U , z 6= 0:

Lyapunov�s theorem on stability

Theorem. Th.5.2, p.170
Let 0 be an equilibrium point for the system above and there is a positive de�nite continuously di¤er-

entiable, C1(U) function V : U ! R ; such that U � G; 0 2 U and Vf (z) = rV � f(z) � 0 8z 2 U , then 0
is a stable equilibrium point.

Remark.
A function V with these propertie is usually called the Lyapunov function of the system.

Proof.
Take an arbitrary " > 0 such that B("; 0) � U . Let � = minz2S(";0) V (z) be a minimum of the

continuous function V on the boundary of B("; 0); that is the sphere S("; 0) = fz : jzj = "g and is a
compact set (closed and bounded). Then � > 0 because V (z) > 0 outside the equilibrium point 0.

By continuity of the function V and the fact that V (0) = 0 one can �nd a 0 < � < " such that

8z 2 B(�; 0) we have V (z) < �=2.

On the other hand for any part of the trajectory x(t) = '(t; �), inside U the function V ('(t; �)) is

non-increasing because d
dt
V ('(t; �)) = (rV � f) (x(t)) � 0. Therefore all trajectories '(t; �) with initial

points � 2 B(�; 0) satisfy V (�) < �=2 . Therefore V ('(t; �)) < �=2 and '(t; �) cannot reach the sphere

S("; 0) where V (z) � � = minz2S(";0) V (z). Therefore any such trajectory stays within the ball B("; 0) and

by the de�nition, the origin 0 is stable. It implies also that R+ � I� , where I� is the maximal interval for

initial point �, because the trajectory stays inside a compact set. �
Remark. The de�nition of stability and proofs of the theorems are exactly the same if we take an

arbitrary equilibrium point x0 instead of the origin and use balls B("; x0) around x0.
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Example.
Investigate stability of the equilibrium point in the origin for the following system:

x01 = x2

x02 = �x1 � x32

that follows from the second order equation x00 + (x0)3 + x = 0.

Try the simple test function V (x1; x2) = x21 + x22. It is positive de�nite.

We check the sign of the derivative of V along trajectories of solutions: Vf (x1; x2) = (rV � f) (x1; x2) =
2x1x2 + 2x2 (�x1 � x32) = �4x42 � 0.
Point out that Vf (x1; x2) = 0 along the x1 axis where x2 = 0, not only in the origin!!!

Example. One dimensional Newton equation.
Consider a similar example mx00+ g(x) = 0, xg(x) > 0; x 6= 0; g(0) = 0. Suppose that

R x
0
g(s)ds!1

as t!1:

It describes a spring with non-linear force g(x). It can be rewritten as a system of ODE�s of the �rst

order.

x1 = x

x0 = x01 = x2;

mx02 = �g(x1)

Consider the test function V (x1; x2):

V (x1; x2) =
m

2
(x2)

2 +

Z x1

0

g(s)ds

representing the energy of the system, consisting of two terms: the kinetic energy m
2
(x0)2 and the potential

energy G(x) =
R x
0
g(s)ds:

Point out that V is positive de�nite because of the limitation xg(x) > 0; x 6= 0.
Consider the derivative Vf of V along trajectories

(rV � f) (x1; x2) =

�
@

@x1
V

�
f1 +

�
@

@x2
V

�
f2

= g(x1)x2 +mx2

�
�
�
1

m

�
g(x1)

�
= 0

The Lyapunov stability theorem implies that the origin is a stable equilibrium point.

We point out also that (rV � f) (x1; x2) = 0 is zero everywhere.
De�nition
Functions that satisfy the relation (rV � f) (x1; x2) = 0 and are therefore constant on trajectories of

the system x0 = f(x) are called �rst integrals of the system.
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We can express level sets V (x1; x2) = h of the �rst integral V in the example above as

x2 = �
r
2

m
(h�G(x1))

that is valid in points where the expression under the root is non-negative.

Proposition. 4.54, p. 161
If the �rst integral V has level sets that are closed curves that do not contain equilibrium points, these

curves are orbits of periodic solutiuons. This idea is almost the only constructive method to calculate

periodic orbits for non-linear systems in plane.

Pointing out that G(x1) =
R x1
0
g(s)ds in the example above is monotone with respect to jx1j ; we

conclude that those level sets of V (x1; x2) that are closed curves and contain no equilibrium points must

be orbits of periodic solutions, according to Poincare-Bendixson theorem. It implies in particular that the

origin is not asymptotically stable equilibrium point in this example.
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Example. Non-linear pendulum without friction.
A particularly interesting example in the form similar to the last one is the equation for pendulum that

we considered earlier by using method with linearization.

�00 = �g
l
sin �

Let k2 = g
l

�0 =  

 0 = �k2 sin �

The function V (�;  )

V (�;  ) =
 2

2
+G(�)

with G(�) = k2(1� cos �) is the �rst integral of the system describing the pendulum.

Level sets of the function V (�;  ) = h consist of the orbits of the system

 = �
p
2 (h�G(�))

. For 0 < h < 2k2 level sets are periodic orbits. For h > 2k2 level sets are wave-looking orbits of trajectories

corresponding to the pendulum rotating around the pivot. There are also level sets corresponding to

h = 2k2 and consisting of unstable equilibrium points and orbits connecting them and corresponding to

trajectories that tend to the upper non-stable equilibrium and not rotating further.

We draw several level sets for the function y2

2
+ 1� cos(x) = h:
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Theorem. Asymptotic stability by Lyapunovs functions. Cor. 5.17, p.185,
Let 0 be an equilibrium point for the system above and let V be a positive de�nite, continuously

di¤erentiable functionV : U ! R ; such that U � G; U - open, 0 2 U; and Vf (z) = rV � f(z) < 0 (strict
inequality outside the origin!) 8z 2 U; z 6= 0, then 0 is an asymptotically stable equilibrium point.

De�nition. Lyapunov functions satisfying conditions in this theorem are often called strong Lyapunov
functions.

Proof.
In the course book this theorem is considered as a corollary to a more general LaSalle�s invariance

principle. We give here an independent proof to asymptotic stability. By the Lyapunov�s stability theorem

the origin is a stable equilibrium and there is a ball B(r; 0) � U such that for any � 2 B(r; 0), R+ � I� ,

where I� is the maximal interval for initial point �. Therefore we need only to show that the origin is an

attractor. Namely we need to show that there is a ball B(r; 0) � U , such that for any � 2 B(r; 0) it follows
that '(t; �)! 0 as t!1.
It su¢ ces to show that limt!1 V ('(t; �) = 0 because V is continuous and is positive outside the

origin, where V (0) = 0. It is easy to see by a contradiction argument, because if '(t; �) does not tend

to the origin, then there is a sequence of times tk ! 1 as k ! 1 such that k'(tk; �)k > " > 0.

It implies that V ('(tk; �)) > q > 0 for some positive q. But it is not compatible with suppositionthat

limt!1 V ('(t; �) = 0.�
Now we continue proving limt!1 V ('(t; �) = 0. By conditions of the theorem d

dt
V ('(t; �) < 0, therefore

0 � V ('(t; �) is a monotone strictly decreasing function of t and must have a limit limt!1 V ('(t; �) = �

as t!1.
Suppose that this limit is not zero: � > 0. Then V ('(t; �) � � > 0 for all t � 0 because V ('(t; �) is

monotone.

Now we will �nd a ball B(�; 0), � < r around the origin so small that the trajectory '(t; �) cannot

reach it. The idea is that outside this ball (where our trajectory '(t; �) is situated) the decreasing rate for

V ('(t; �) along the trajectory is never close to zero. This fact would lead us to a contradiction with out

supposition.

Continuity of V and the fact that V (0) = 0 imply that there is a ball B(�; 0), � < r such that

0 � V (z) < �=2 for all z 2 B(�; 0). Hence '(t; �) cannot reach it: k'(t; �)k � � for all t � 0; because

V ('(t; �) � � > 0 for all t � 0 by our supposition that V ('(t; �)& � as t!1.
Now we will estimate the smalles rate of decrease for V ('(t; �) that follows from our conclusions.

Consider the closed spherical slice S = fz : � � kzk � rg and point out that  = minz2S (�Vf (z)) > 0

exists because Vf is continuous.

 > 0 by the condition of the theorem that Vf < 0 outside the origin. Therefore

� d

dt
V ('(t; �)) �  = min

z2S
(�Vf (z))

and
d

dt
V ('(t; �)) � �
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By integration from 0 to t we arrive to

V ('(t; �))� V (�) � �t! �1

as t!1 that contradicts to the supposition that V (z) � 0.
It implies that our supposition that limt!1 V ('(t; �) = � > 0 was wrong and that limt!1 V ('(t; �) =

0:As we pointed out at the beginning of the proof, the last fact implies, that limt!1 '(t; �) = 0 and

therefore the origin is an attractor and is an asymptotically stable equilibrium point.�

Remark.
This theorem on asymptotic stability has a (very di¢ cult!) inversion (proven in 1949,1956) by José

Luis Massera, Uruguay, stating that for any system with an asymptotically stable equilibrium point, there

is a "strong" Lyapunov function V such that Vf (z) < 0 in a neighborhood of this equilibrium point (outside

the point z = 0 itself).

De�nition. Region of attraction for an asymptotically stable equilibrium point.
A domain U � G is called the attraction region for an asymptotically stable equilibrium point x� 2 U

if for any � 2 U ; the maximal existence interval I� of the the solution x(t) = '(t; �) contains R+ � I� and

'(t; �)! x� as t!1.

Example. Consider the system of equations

x0 = �x+ 2xy2

y0 = �(1� x2)y3

Investigate stability of the equilibrium in the origin and �nd possible region of attraction.

Point out that the Jacoby matrix in the origin is degenerate J =

"
�1 0

0 0

#
and linearization of the

system does not give any information about stability of the equilibrium in the origin.

Consider the simplest test function V (x; y) = x2 + y2:

Vf (x; y) = (rV � f) (x; y) =
"
2x

2y

#
�
"
�x+ 2xy2

�(1� x2)y3

#
= 2x

�
�x+ 2xy2

�
+ 2y

�
�(1� x2)y3

�
= 4x2y2 � 2y4 � 2x2 + 2x2y4

= �2x2(1� 2y2)� 2y4(1� x2)

Vf (x; y) < 0 in the rectangle [�1; 1]� [�1=
p
2; 1=

p
2], (x; y) 6= 0: Therefore origin is the asymptotically

stable equilibrium with the region of attraction - the camallest circle around the origin that �ts into this

rectangle: x2 + y2 < 1=2.

Example. Consider the system of equations

y01 = �y31 � 2y1y22
y02 = y21y2 � y32
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Investigate stability of the equilibrium point in the origin �nding a suitable Lyapunov function. Consider

the following test function:

V (y1; y2) = y21 + y21y
2
2 + y42

The test function V is positive de�nite. We draw several level sets for V (x; y) = x2 + x2y2 + y4 = h, for

h = 1; 20; 30:
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We choose the form of the test function in such a way that on the level set curves of this function

velocities f(y1; y2) point inward: (rV � f) (y1; y2) < 0. We have chosen the term y42 having
@
@y2
(y42) =

4y32 that after multiplication with the term �y32 from f2 gives a "good" negative term �4y62. Similarly
@
@y1
(y21) = 2y1 multyplied by the term �y31 from f1 gives a good negative term �2y41. The tricky step is

to play with "bad" inde�nite mixed products in such a way that they (in the best case!) give no terms in

(rV � f) (y1; y2) with inde�nite sign.

Vf (y1; y2) = (rV � f) (y1; y2) =�
2y1 + 2y1y

2
2

� �
�y31 � 2y1y22

�
+

+
�
2y21y2 + 4y

3
2

� �
y21y2 � y32

�
= �2y41 � 4y21y22 � 2y41y22 � 4y21y42 + 2y21y42 � 4y62 + 2y41y22
= �2y41 � 4y62 � 4y21y22 � 2y21y42
=

�
�y41 � 2y62 � 2y21y22 � y21y

4
2

�
2

�
�
�y41 � 2y62

�
2 < 0; (y1; y2) 6= (0; 0)

Therefore according to the last theorem, the origin (0; 0) is an asymptotically stable equilibrium point. The

test function tends to ini�nity with k(y1; y2)k ! 1. It implies that the equilibriuh has the whole plane
R2 as the region of attraction. All trajectories '(t; �) tend to the origin with t!1: '(t; �) �!

t!1
(0; 0):1

Remark
One can arrive to inde�nite terms after calculation of Vf . :It is still not the end of hope. One can

check that these inde�nite terms are not large and might be compensated by negative de�nite terms in the

expression for Vf . . For example the expression �x2�y2+xy < 0 for (x; y) 6= (0; 0) because 2 jxyj � x2+y2.
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One can also use criteria for positive and negative de�nite quadratic forms in such problems.
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Lyapunov�s theorem on instability

We give here a slightly weaker variant of the instability theorem comparing with one in the book. An

advantage of the variant here is that it suggests a more constructive proof.

Students are free to choose any of these two variants at the examination.

De�nition.
An equilibrium point 0 2 G of the system is said to be unstable if it is not stable.

Explicit version of the same de�nition.
There is a ball B(R; 0) � G and for any � > 0 there is a point � 2 B(�; 0)
such that for the trajectory '(t; �) starting in � there is time t� 2 I� such that '(t; �) =2 B(R; 0).

Another reformulation of this de�nition is possible.

Another explicit version of the same de�nition
There is a ball B(R; 0) � G and a sequence of points fxng1n=1 such that limn!1 xn = 0 such that for

each maximal solution '(t; �) with initial data � = xn there is time t� 2 I� such that '(t; �) =2 B(R; 0).

Theorem. On a criterion of instability of an equilibrium using test functions.
Let the origin 0 - be the equilibrium point of the system x0 = f(x): Assume that there is a neighbour-

hood U � G, 0 2 U and a continuously di¤erentible C1(U) function V : U ! R satisfying the following

hypotheses.

1) Vf (z) = rV � f(z) > 0 for every z 2 U , z 6= 0
2) For every � > 0 there exists z 2 U with kzk < � and V (z) > 0

3) V (0) = 0:

Then the origin 0 is an unstable equilibrium.

Remark. The Theorem Th. 5.7, p. 174 formulted in the book is stronger. It has the same

conclusion with the condition 1) changed to a weaker one:

1) Vf (z) = rV � f(z) > 0 for every point z 2 U , where V (z) > 0; and 3) is not required.
Proof of the weaker variant of the Theorem
The idea of the proof is to show that any trajectory starting from a point � arbitrarily close to 0 where

V (�) > 0 will leave a �xed ball B(R=2; 0) such that a larger ball B(R; 0) � U .

We point out that for any part of the trajectory '(t; �) of the maximal solution in U the function

V ('(t; �)) is monotone increasing because d
dt
V ('(t; �)) = Vf ('(t; �)) > 0:

It means that '(t; �) stays outside the origin because Vf (z) is continuous and Vf (0) = 0. It in turn

means that (rV � f) ('(t; �)) = d
dt
V ('(t; �) � K > 0 for all t 2 I� \ R+:

To prove this inequality one can carry out a more formal argument that follows.

Let � 2 B(R; 0) be an arbitrary point where V (�) > 0. V is a continuous function and V (0) = 0. It

implies that there is 0 < " < R=2 such that V (z) < V (�)=2 for kzk < ".

Therefore the trajectory '(t; �) must stay outside the ball B("; 0) for all t 2 I� \R+.
The function (rV � f) (z) is continuous in U and must attaint its minumum K = minz2B(R;0)nB(";0) (rV � f) (z)

on the compact set B(R; 0)n B("; 0) that is a slab between two spheres. The number K is positive K > 0

because (rV � f) (z) > 0 for z 2 U outside the origin.
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Therefore

(rV � f) ('(t; �)) = d

dt
V ('(t; �)) � K > 0; 8t 2 I� \ R+

and by the integration of the left and right hand side over [0; t] we get

V ('(t; �) � Kt+ V (�); 8t 2 I� \ R+

There are two possibilities depending on if I�\R+ is a bounded interval or R+ � I�: In the �rst case the

trajectory '(t; �) must leave any compact in G in particlular the ball B(R; 0). In the second case having

possibility to take t arbitrary large in the inequality V ('(t; �) � Kt + V (�) leads to conclusion, that for

some time t� > 0 large enough V ('(t�; �)) will become larger than maxz2B(R=2;0) V (z) - the maximum of

V (z) over the half ball B(R=2; 0). It means that the point '(t�; �) of the trajectory must be outside the

ball B(R=2; 0) at such time t�.

Therefore according to the de�nition, the origin 0 is an unstable equilibrium, because there are trajec-

tories starting arbitrarily close to the equilibrium 0, such that they are move outside the ball B(R=2; 0)

� G at some time t�.�
Remark. If we suppose in the formulation of the theorem above that V (z) > 0 for all z 2 U ,

z 6= 0; then the origin is a repeller, meaning that for some ball B(R; 0) around the origin, any solution

x(t) = '(t; �) with � 2 B(R; 0) will leave this ball in �nite time.

Example.
Consider the system

x0 = x3 + yx2

y0 = �y + x3

Show that the origin is unstable equilibrium by using the test function V (x; y) = x2

2
� y2

2
:

Point out that the linearization has matrix J =

"
0 0

0 �1

#
and the Grobman Hartman theorem cannot

be applied.

Vf (x; y) =

"
x

�y

#
�
"
x3 + yx2

�y + x3

#
=

y2 + x4 � yx3 + x3y = y2 + x4 > 0

V (x; y) > 0 on the x-axis, arbitrary close to the origin. There is a ball B(0; R) around the origin

such that trajectories starting on the x-axis arbitrary close to the origin will leave it in �nite time by the

Lyapunov instability theorem.
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