Tenta i ODE och matematisk modellering, MMG511, MVE162 (MVE161)

Answer first those questions that look simpler, then take more complicated ones etc. Good luck!

1. Formulate and give a proof to the theorem about the dimension of the space of solutions to a linear system of ODEs.
(4p)
Check
2. Formulate and give a proof to the theorem on stability of equilibrium points of autonomous non-linear ODEs by linearization with Hurwitz variational matrix.
(4p)
3. Consider the following initial value problem: $y^{\prime}=\sin (y) t^{2} ; y(1)=2$.
a) Reduce the initial value problem to an integral equation and give a general description of iterations approximating the solution as in the proof to the existence and uniqueness theorem by Picard and Lindelöf.
b) Find a time interval such that these approximations converge to the solution of the initial value problem.
(2p)

Solution.

We introduce an integral equation equivalent to the $\operatorname{ODE} y^{\prime}=f(t, y)$ by the integration of the right and left hand sides in the equation:

$$
y(t)=y(1)+\int_{1}^{t} f(s, y(s)) \mathrm{d} s
$$

Taking $y_{0}(t)=y(1)$ we define Picard iterations by the recurrense relation

$$
y_{n+1}(t)=y(1)+\int_{1}^{t} f\left(s, y_{n}(s)\right) \mathrm{d} s
$$

For the particular equation it looks as

$$
y_{n+1}(t)=y(1)+\int_{1}^{t} \sin \left(y_{n}(s)\right) s^{2} \mathrm{~d} s=\mathbb{K}\left(y_{n}, t\right) .
$$

One proves the existence and uniqueness theorem by showing that at some time interval the integral operator $\mathbb{K}(y, t)=y(1)+\int_{1}^{t} \sin (y(s)) s^{2} \mathrm{~d} s$ in the right hand side is a contraction:

$$
\sup _{t \in[1, T]}|\mathbb{K}(w, t)-\mathbb{K}(u, t)|<\alpha \sup _{t \in[1, T]}|w(t)-u(t)|
$$

$\alpha<1$, in a ball $\sup _{t \in[1, T]}|w(t)-y(1)| \leq R$ in the space of continuous functions, and maps this ball into itself:

$$
\sup _{t \in[1, T]}|\mathbb{K}(w, t)-y(1)| \leq R
$$

and applying the Banach contraction theorem to $\mathbb{K}(y, t)$.
We estimate first $\sup _{t \in[1, T]}|\mathbb{K}(w, t)-\mathbb{K}(u, t)|$ for continuous functions u and w such that $\sup _{t \in[1, T]}|w(t)-y(1)| \leq R$ and
$\sup _{t \in[1, T]}|u(t)-y(1)| \leq R$. Point out that $\sup _{t \in[1, T]}|w(t)| \leq y(1)+R$. We will find T such that the contraction property is valid:

$$
\sup _{t \in[1, T]}\left|\int_{1}^{t} \sin (w(s)) s^{2} \mathrm{~d} s-\int_{1}^{t} \sin (u(s)) s^{2} \mathrm{~d} s\right| \leq \alpha \sup _{t \in[1, T]}|w(t)-u(t)|, \quad \alpha<1
$$

We carry out elementary estimates using the triangle inequality and intermediate value theorem for \sin. $\left|\int_{1}^{t} \sin (w(s)) s^{2} \mathrm{~d} s-\int_{1}^{t} \sin (u(s)) s^{2} \mathrm{~d} s\right|=\int_{1}^{t} \mid\left(\sin (w(s))-\sin (u(s)) \mid s^{2} d s=\right.$ $\int_{1}^{t}|(w(s)-u(s)) \cos (\theta(s))| s^{2} d s \leq(T-1) T^{2} \sup _{t \in[1, T]}|w(s)-u(s)|$
The argument $\theta(s)$ above is a number between $w(s)$ and $u(s)$ that exists according the intermediate value theorem. It was also used above that $|\cos (\theta)| \leq 1$. Therefore to have the contraction property we need to have $(T-1) T^{2}<1$.
For a function w with $\sup _{t \in[1, T]}|w(t)-y(1)| \leq R$ we need that $|\mathbb{K}(w, t)-y(1)| \leq R$
The following estimate leads to another bound for $T: \sup _{t \in[1, T]}|\mathbb{K}(w, t)-y(1)| \leq \sup _{t \in[1, T]}\left|\int_{1}^{t} \sin (w(s)) s^{2} d s\right| \leq$ $(T-1) T^{2} \leq R$.
Therefore the time interval must satisfy estimates $(T-1) T^{2}<1$ and $(T-1) T^{2}<R$ to have convergence of Picard iterations in the ball $\sup _{t \in[1, T]}|w(t)-y(0)| \leq R$. Taking $R=1$ we get an optimal estimate $(T-1) T^{2}<1$ that is satisfied for example for $T=1.4$:
$\alpha=0.4(1.4)(1.4)=0.784$
4. Consider the following system of ODE: $\frac{d \vec{r}(t)}{d t}=A \vec{r}(t)$, with a constant matrix $A=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & 2 & 0\end{array}\right]$. Give general solution to the ODE. Find all initial data such that corresponding solutions to the system are bounded.

Solution.

The solution to the initial value problem with arbitrary initial data $\vec{r}(0)$ is $\vec{r}(t)=\exp (t A) \vec{r}(0)$.
The matrix A xas a block diagonal structure $A=\left[\begin{array}{cc}J & \mathbb{O} \\ \mathbb{O} & Z\end{array}\right]$ where $J=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ is a Jordan bloc and $Z=\left[\begin{array}{cc}0 & -2 \\ 2 & 0\end{array}\right]$.
Therefore $\exp (t A)=\left[\begin{array}{cc}\exp (t J) & \mathbb{O} \\ \mathbb{O} & \exp (t Z)\end{array}\right]$.
$\exp \left((t J)=I+t J+\frac{1}{2} t^{2} J^{2}+\ldots=\left[\begin{array}{cc}1 & t \\ 0 & 1\end{array}\right]\right.$, because $J^{2}=0 ;$
$\exp (t Z)=\left[\begin{array}{cc}\cos (2 t) & -\sin (2 t) \\ \sin (2 t) & \cos (2 t)\end{array}\right]$. The last relation can be approved in the following way. Multiplication and addition of matrices of the form $\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$ satisfies the same rools as multiplication and addition of complex numbers $z=a+i b$. Therefore the matrix $\left[\begin{array}{cc}0 & -b \\ b & 0\end{array}\right]$ corresponds through this correspondence to purely imaginaty numbers, and the relation $\exp (i b)=\cos (b)+i \sin (b)$ can be applied leading to the formula for $\exp (t Z)$ above.

General solution to the system of ODEs with initial data[$\left.\begin{array}{llll}r_{1} & r_{2} & r_{3} & r_{4}\end{array}\right]^{T}$ is

$$
\vec{r}(t)=\left[\begin{array}{cccc}
1 & t & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \cos (2 t) & -\sin (2 t) \\
0 & 0 & \sin (2 t) & \cos (2 t)
\end{array}\right]\left[\begin{array}{l}
r_{1} \\
r_{2} \\
r_{3} \\
r_{4}
\end{array}\right]
$$

It is easy to see that $\vec{r}(t)$ is bounded if and only if $r_{2}=0$
One can also construct general solution as a linear combination of eigenvectors and generalized eigenvectors:
Let $v_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]$ - the eigenvector corresponding to $\lambda=0 . v_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]$ - the generalized eigenvector corresponding to $\lambda=0, u_{3}=\left[\begin{array}{l}0 \\ 0 \\ i \\ 1\end{array}\right]$ the complex eigenvector corresponding to $\lambda=2 i$, and $u_{4}=\left[\begin{array}{c}0 \\ 0 \\ -i \\ 1\end{array}\right]$ the complex eigenvector corresponding to $\lambda=-2 i$.
The general solution has the form:
$\vec{r}(t)=C_{1}\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]+C_{2}\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]+C_{2} t\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]+C_{3} \operatorname{Re}\left(\exp (2 i t)\left[\begin{array}{l}0 \\ 0 \\ i \\ 1\end{array}\right]\right)+C_{4} \operatorname{Im}\left(\exp (2 i t)\left[\begin{array}{l}0 \\ 0 \\ i \\ 1\end{array}\right]\right)=$
$C_{1}\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]+C_{2}\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]+C_{2} t\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]+C_{3}\left(\cos (2 t)\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]+\sin (2 t)\left[\begin{array}{c}0 \\ 0 \\ -1 \\ 0\end{array}\right]\right)$
$+C_{4}\left(\cos (2 t)\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]+\sin (2 t)\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]\right)$
We observe here that the solution has the same as from the formula for $\exp (A t)\left[C_{1}, C_{2}, C_{3}, C_{4}\right]^{T}$ and again that solutions are bounded if and only if $C_{2}=0$.
5. Consider the following system of ODEs: $\left\{\begin{array}{l}x^{\prime}=-x+5 y^{3} \\ y^{\prime}=-x^{3}-3 y\end{array}\right.$.

Show asymptotic stability of the equilibrium point in the origin and find it's region of attraction.

Solution.

Choose a test function $V(x, y)=\frac{1}{4}\left(x^{4}+5 y^{4}\right) . V(x)$ is positive definite and

$$
\begin{aligned}
\nabla V \cdot \vec{f} & =\nabla\left(\frac{1}{4}\left(x^{4}+5 y^{4}\right)\right) \cdot\left[\begin{array}{l}
-x+5 y^{3} \\
-x^{3}-3 y
\end{array}\right]=\left[\begin{array}{l}
x^{3} \\
5 y^{3}
\end{array}\right] \cdot\left[\begin{array}{l}
-x+5 y^{3} \\
-x^{3}-3 y
\end{array}\right] \\
& =5 x^{3} y^{3}-15 y^{4}-x^{4}-5 y^{3} x^{3}=-x^{4}-15 y^{4} \leq 0
\end{aligned}
$$

$\nabla V \cdot \vec{f}(x, y)=0$ only for $(x, y)=(0,0)$. Therefore the origin is asymptotically stable.
Any region $\{(x, y): V(x, y) \leq R\}$ with a $R>0$ is a region of attraction. Pointing out that $V(x, y) \rightarrow \infty$ with $\|(x, y)\| \rightarrow \infty$ we conclude that the origin is globally asymptoticaly stable and the whole \mathbb{R}^{2} is the region of attraction for the origin.
6. Show that the system

$$
\left\{\begin{array}{l}
x^{\prime}=y \tag{4p}\\
y^{\prime}=-x+y\left(1-x^{2}-2 y^{2}\right)
\end{array}\right.
$$

has periodic solutions.

Solution.

Consider a test function $V(x, y)=\left(x^{2}+y^{2}\right)$
$\nabla V \cdot f=2 y^{2}\left(1-x^{2}-2 y^{2}\right)$
The sign of the derivative of V along trajectories of the system depends on the sign of the expression $\left(1-x^{2}-2 y^{2}\right)$. Analysing it we observe that trajectories through the points (x, y) outside the ellipse $x^{2}+2 y^{2}<1$:

do not leave discs bounded by level sets of $V(x, y)=x^{2}+y^{2}=$ const. The smallest circle outside this ellipse is $x^{2}+y^{2}=1$.
Similarly for points inside this ellipse, trajectories do not enter discs bounded by level sets of $V(x, y)$ (circles). The largest circle inside this ellipse is $x^{2}+y^{2}=1 / 2$.
It implies that the annulus $1 / 2<x^{2}+y^{2}<1$ is a positively invariant set for this system. It includes no stationary points, because stationary points must have $y=0$ by the first equation, and in this case $x^{\prime} \neq 0$ outside the origin. Therefore this annulus must include at least one periodic orbit.
Max. 24 points;
Threshold for marks: for GU: VG: 19 points; G: 12 points. For Chalmers: 5: 21 points; 4: 17 points; 3: 12 points;

One must pass both the home assignments and the exam to pass the course. Total points for the course are calculated as Total $=0.32$ Assignments +0.68 Exam - the average of the points for the home assignments (32%) and for this exam (68%). The same threshold is valid for the exam, for the home assignments, and for the total points for the course.

