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1. Formulate and give a proof to the theorem about the dimension of the solution space
for the system of linear ODEs. (4p)
Theorem. (Proposition 2.7, p.30, L.R. in the case of non-autonomous systems).
Let b1; :::; bN be a basis in RN(or CN). Then the functions yj : R! RN(or CN) de�ned

as solutions to the I.V.P.
x0(t) = A(t)x(t) (1)

with yj(�) = bj, j = 1; :::N , by yj(t) = exp(A(t � �))bj; form a basis for the space Shom of
solutions to (1). The dimension of the vector space Shom of solutions to (1) is equal to N -
the dimension of the system (1).
Hint to the proof. This property is a consequence of the linearity of the system and

the uniqueness of solutions to the system and is independent of detailed properties of the
matrix A(t).
Proof. Consider a linear combination of yj(t) equal to zero for some time � 2 R:

l(�) =
PN

j=1 �jyj(�) = 0. The trivial constant zero solution coinsides with l at this time
point.
But by the uniqueness of solutions to (1) it implies that l(t) must coinside with the

trivial zero solution for all times and in particular at time t = � . Therefore
PN

j=1 �jbj = 0.
It implies that all coe¢ cients �j = 0 because b1; :::; bN are linearly independent vectors in
RN(or CN). Therefore y1(t); :::; yN(t) are linearly independent for all t 2 R by de�nition.
Arbitrary initial data x(�) = � can be represented as a linear combination of basis vectors
b1; :::; bN : � =

PN
j=1Cjbj. The construction of y1(t); :::; yN(t) shows that an arbitrary solution

to (1) can be represented as linear combination of y1(t); :::; yN(t).

x(t) = exp(A(t� �))� = exp(A(t� �))
NX
j=1

Cjbj =
NX
j=1

Cjyj(t)

Therefore fy1(t); :::; yN(t)g is the basis in the space of solutions Shom and therefore Shom has
dimension N:�
2. Formulate and give a proof to LaSalle�s invariance principle. (4p)
Formulation.
Assume that f is locally Lipschitz as before and let '(t; �) denote the �ow generated by

the corresponding system
x0 = f(x)

Let U � G be non-empty and open. Let V : U ! R be continuously di¤erentiable and
such that Vf (z) = rV � f(z) � 0. for all z 2 U . If � 2 U is such that the closure of the
semi-orbit O+(�) is compact and is contained in U , then R+ � I� (maximal existence interval
for �) and '(t; �) approaches as t!1 the largest invariant set contained in V �1f (0) that is
the set where Vf (z) = 0.
Proof.
Proof given in the solution of Exercise 5.9, on p. 312.
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3. Consider the following matrix A =

24 1 1 0
�1 3 0
�1 1 2

35.
a) Write down a canonical Jordan form J for the matrix A and �nd the matrix P in the

relation J = P�1AP using eigenvectors and generalised eigenvectors to A (do not calculate
P�1):
b) Write down general solution to the system x0 = Ax with this matrix A. (4p)
Solution.
a)

The characteristic polynomial is det(A� �I) = det

24 1� � 1 0
�1 3� � 0
�1 1 2� �

35 =
(2� �) det

�
1� � 1
�1 3� �

�
= (2� �)

�
�2 � 4�+ 4

�
= (2� �)3.

The only eigenvalue � = 2 has multiplicity 3.

Find eigenvectors. (A� 2I) =

24 �1 1 0
�1 1 0
�1 1 0

35. There are two linearly independent eigen-
vectors, for example w1 =

24 11
0

35 and v2 =
24 00
1

35. We need one more generalized eigenvector
to construct the representation J = P�1AP . We consider equations (A � 2I)x = w1 and
(A�2I)x = v2 for possible generalized eigenvectors. They both are not solvable because the
range of the matrix (A� 2I) is one dimensional and consists of vectors parallel to the eigen-

vector

24 11
1

35 = w1+v2: It motivates to choose eigenvectors v1 =
24 11
1

35 and v2 =
24 00
1

35 and
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a generalized eigenvector v(1)1 =

24 �10
0

35 that is a solution to the equation (A� 2I)x = v1:
We can �nally make conclution that the Jordan form corresponding matrix A is J =24 2 1 0
0 2 0
0 0 2

35 and corresponding matrix P in the relation J = P�1AP has columns v1; v
(1)
1

and v2: P =

24 1 �1 0
1 0 0
1 0 1

35.�
Solution.
b) The general solution x(t) = eAtx0 to the equation can be written by choosing the

initial data x0 expressed in terms of the basis of eigenvectors and generalized eigenvectors
x0 = C1v1 + C2v

(1)
1 + C3v2 and using for each term the representation for the exponent eAt

acting on an element x0;j of a particular generalized eigenspace:

eAtx0;j =

"
mj�1X
k=0

(A� �jI)k
tk

k!

#
e�jtx0;j

where mj is the multiplicity of the eigenvalue �j and x0;j is an element of the corresponding
generalized eigenspace.
General solution to the particular system of interest with initial data � = C1v1+C2v

(1)
1 +

C3v2is
x(t) = e2t

�
C1v1 + tC2v1 + C2v

(1)
1 + C3v2

�
follows from the general expression
4. Find for which values of the parameter a the origin is an asymptotically stable

equilibrium, stable equilibrium, unstable equilibrium of the following system:�
x0 = y
y0 = �ay � x3 � a2x (4p)

Solution. Consider the Jacoby matrix of the right hand side in the equatiuon.

A(x; y) =

�
0 1

�a2 � 3x2 �a

�
. It�s value in the origin is A(0; 0) =

�
0 1
�a2 �a

�
, with

characteristic polynomial: p(�) = �2 + a�+ a2.

Eigenvalues are �1;2 = �a
2
�
q

a2

4
� a2 = �a

2
� i
q

3a2

4

The Grobman - Hartman theorem about stability by linearization imples that the origin
is asymptotically stable when a > 0 and is unstable when a < 0. For a = 0 linearization
does not give any information about stability because in this case Re� = 0. In this case the

system is reduced to
�
x0 = y
y0 = �x3 and we can �nd an equation for trajectories of the system
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from an ODE with separable variables:

dy

dx
=

�x3
y

ydy = �x3dxZ
ydy = �

Z
x3dx

y2

2
= �x

4

4
= +C

x4

4
+
y2

2
= 1
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We observe that trajectories for the system are closed curves like "�attened circles"
parametrized by C � 0. It implies that the origin is a stable equilibrium when a = 0.�
� One could also just guess that the positive de�nite test function V (x; y) = x4

2
+ y2 is

a weak Lyapunov function for the system with the right hand side f(x; y):

f(x; y) =

�
y
�x3

�
f � rV = 0

and make the same conclusion that the origin is a stable equilibrium in the case of a = 0:�
5. Consider the following system of ODEs. Prove the instability of the equilibrium point

in the origin, of the following system�
x0 = x5 + y3

y0 = x3 � y5 (4p)

using the test function V (x; y) = x4 � y4 and Lyapunov�s instability theorem.
Solution.

Denoting f(x; y) =
�
x5 + y3

x3 � y5
�
, consider how V (x; y) = x4�y4changes along trajectories

of the system. f(x; y) � rV (x; y) =
�
x5 + y3

x3 � y5
�
�
�
4x3

�4y3
�
=

x54x3 + y34x3 � x34y3 + y54y3 = x54x3 + y54y3 = 4(x8 + y8) > 0:
Point out that the function V (x; y) = x4 � y4 is positive along the line y = x=2, x > 0

arbitrarily close to the origin. It implies according to the instability theorem, that the origin
is an unstable equilibrium.�
6. Show that the following system of ODEs has a periodic solution.�

x0 = y
y0 = �1

3
x+ (1� 4x2 � y2)y (4p)
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Solution.
We intend to proof that conditions of the Poincare - Bendixsons theorem can be satis�ed.

Nemaly, that there is a ring shaped positively invariant set that does not include equilibrium
points of the system. We try to �nd such an invariant set bounded by level sets of a test
function V (x; y).
A convenient choice of the test function is V (x; y) = 1

3
x2 + y2. Its level sets are ellipses

with center in the origin: 1
3
x2 + y2 = C:
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For f(x; y) =
�
y
�1
3
x+ (1� 4x2 � y2)y

�
we have

f(x; y) � rV (x; y) =

�
y
�1
3
x+ (1� 4x2 � y2)y

�
�
�

2
3
x
2y

�
=

= y
2

3
x+ 2y

�
�1
3
x+ (1� 4x2 � y2)y

�
= 2y2(1� 4x2 � y2)

we observe that f(x; y) � rV (x; y) < 0 outside the ellipse E : 4x2 + y2 = 1
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and f(x; y) �rV (x; y) > 0 inside this ellipse. It means that inside the ellipse E all trajectories
cross level sets of the test function V in the direction out of the origin. Similarly outside
the ellipse E all trajectories cross level sets of the test function V in the direction towards
the origin.
To �nd the desired ring shaped invariant set we must �nd a level set of V that lays

completely outside E for the outer boundary of the invariant set, and a level set of V that
lays completely inside E for the inner boundary of the invariant set. We choose the ellipse
V (x; y) = 1

3
x2+ y2 = (1:5)2 as the outer boundary so that it upper point is above the upper
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point of the elipse E and the elllipse V (x; y) = 1
3
x2 + y2 = 1

6
(0:5)2as the inner boundary, so

that its left and right points are inside the ellipse E .
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The ring shaped set can be speci�ed by inequalities 1
6
(0:5)2 � V (x; y) � (1:5)2.

The system has only one equilibrium point in the origin. It follows from the observation
that equilibrium points must be on the x - axis and from the fact that y0 = �1

3
x on the x -

axeln and is zero only in the origin.
We can conclude that the system must have at least one periodic orbit inside the set

de�ned by 1
6
(0:5)2 � V (x; y) � (1:5)2 :�
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