
Lecture notes on non-linear ODEs: existence, extension, limit sets, periodic

solutions.

Plan

1. Peano theorem on existence of solutions (without proof), Theorem. 4.2,

p. 102.

2. Existence and uniquness theorem by Picard and Lindelöf . Th. 4.17,

p. 118 (for continuous f(t; x), locally Lipschitz in x),

Th.4.22, p.122 (for piecewise continuous f(t; x), locally Lipschitz in x).

(Proof comes in the last week of the course)

3. Maximal solutions. Openess of the maximal existence interval. Prop.

4.4., p. 107.

4. Existence of Maximal solutions. Theorem 4.8.

5. Extensibility of bounded solutions to the boundary time point of the

interval. Lemma 4.9, p. 110.

6. Corollary 4.10, p. 111, on solutions enclosed in a compact, implying

"in�nite" maximal interval.

7. Properties of limits of maximal solutions. Theorem 4.11, p. 112 on

the property of solutions with "�nite" maximal interval Imax, to escape any

compact subset C in the space domain C �G.

8. On in�nite existence interval for systems with linear growth estimate

for the right hand side. Proposition 4.12, p. 114.

9. Transition map. De�nition p. 126. Transition property of the transition

map. Translation property for autonomous systems.

Theorem 4.26, p. 126. (similar to Chapman - Kolmogorov relations for

transition matrix)

10. Openness of the domain and smoothness of transition map.Theorem

4.29, p. 129.

11. Autonomous systems. §4.6.1. Example 4.33., p. 139. of a transition

map.
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0.1 Non-linear systems. Existence and uniqueness of solutions.

Second half of the course deals with initial value problems for non-linear systems of ODE�s,

non-autonomous:

x0(t) = f(t; x); f : J �G! Rn; x(�) = � (1)

with J � R - an interval, G � Rn, open, � 2 J , � 2 G; f - continuous in J � G, and

autonomous systems of ODE�s:

x0(t) = f(x); f : G! Rn; x(�) = � (2)

that are a particular case of (1) with G � Rn, open, � 2 J = R, � 2 G, f - continuous in G;

where the right hand side f in the equation is independent of the time variable t running

over the whole R. The practical meaning of this kind of systems is that the "velocity" f

of the system depends only on the position x, but not on time t. So independently of the

starting time � the output x(t) of an evolution depends only on the shift in time t � � . It

lets to choose always � = 0 for autonomous systems.

In many situations the equivalent integral form of I.V.P. is convenient to use:

x0(t) = � +

Z t

�

f(s; x(s))ds (3)

Another option of requirements to f that is considered in the book by Logemann Ryan

is that f is supposed to be piecewise continuous in t and locally Lipschitz with respect to

x. We will not consider this case systematically in this part of the course.

The fundamental question of existence of solutions is answered by the following Peano

theorem (with possibility of non-uniqueness of solutions)

Theorem 4.2, p. 102. Peano theorem.

For each (� ; �) in J �G there exists a solution to (1) de�ned on a (possibly small) time

interval I � J , � 2 I.

This result implies also the solvability of the problem (2) that is just a particular case.

The proof of this theorem is based on the compactness principle, one of two main ap-

proaches in analysis to the existence of solutions to non-linear equations. We do not give a

2



proof, but will sketch main ideas behind it.

i) One of characteristic properties of compact sets in complete normed spaces is, that

any sequence of points fzng1n=1 from a compact set C always has a converging subsequence

fznkg
1
k=1 with a limit limk!1 znk = z� that belongs to C: z� 2 C.

ii) One approximates solutions to (1) by the explicit Euler method and considers a se-

quence fyn(t)g1n=1 of approximations ith the step of �nite di¤erences tending to zero with

n!1:

iii) Considering these approximations on a time interval I including � and choosing this

interval small enough (depending on the absolute value of f around (� ; �)), one can show

that the approximathions fyn(t)g1n=1 , are uniformly bounded and uniformly continuous on

I.

iv) Then basing on the property i) and on iii), one can choose a subsequence fynk(t)g
1
k=1

converging uniformly on I; to a function y(t) in the space of continuous vector valued func-

tions on I , that is a solution to (3) and therefore to (1).�

Exercise. Show that the I.V.P. x0= 3
p
x; x(0) = 0, has non-unique solutions.

The uniqueness of solutions to I.V.P. needs additional requirements on regularity of f(t; x)

with respect to x variable. The standard requirement is that f(t; x) is supposed to be locally

Lipschitz with respect to the space x variable.

We repeat here the de�nition of locally Lipschitz functions.

De�nition. Let A be any subset in a metric space X. The the set UA is called to be

relatively open in A if there is an open subset U � X such that UA = U \ A:

De�nition.(p. 115)

Let D � R�Q be a non-empty set A function g : D ! RM is said to be locally Lipschitz

if for any z 2 D there is a set U � D, realtively open in D; z 2 U; and a number L � 0

(which may depend on U) such that

kg(u)� g(w)k � L ku� wk ; 8u;w 2 U

If L is independent of the choice of U , the function is called globally Lipschitz.
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Similarly one de�nes functions locally Lipschitz with respect to a part of variables.

De�nition.(p. 118)

Let G � R�n be a non-empty open set, J be an interval in R. A function f : J �G! Rn

is said to be locally Lipschitz with respect to x 2 G if for any (� ; x) 2 J � G there is a set

S�U � J �G, realtively open in J �G and a number L � 0 (which may depend on S�U)

such that

kg(s; x)� g(�; y)k � L kx� yk ; 8(s; x); (�; y) 2 J �G

A theorem that gives conditions for both existence and uniquness of solutions to (1) is

called the Picard-Lindelöf theorem

We will prove it in the last week of the course by applying the Banach contraction

principle, that is the second main approach in analysis to existence of solutions to non-linear

equations.

Theorem. Picard-Lindelöf. Theorem 4.17, p. 118 (variant with continuous f):

Let with J � R - an interval, G � Rn, open, � 2 J , � 2 G; f be continuous in J � G.

If f is locally Lipschitz with respect to its second argument x 2 G, then there is a unique

maximal solution x : Ix ! Rn to the I.V.P. problem (1): Any other maximal solution with

the same initial conditions must coinside with x(t):

De�nition. By maximal solution we mean here the solution that cannot be extended to

a larger time interval.

A simpler version of this theorem states just that a "local" solution to (1) on a possibly

small time interval I � J ; � 2 I, exists and is unique in the sence that any two solutions

x and y must coinside on the intersection of the time intervals Ix and Iy where they are

de�ned.

Proof of local uniqueness uses the integral form of the problem and the ar-

gument with the Grönvall inequality that was in a similar fashion applied two

times earlier for lineary systems.

The same argument with the Grönvall inequality is used for proving well

posedness of the I.V.P., namely that solutions to initial value problem (1) consid-

ered as functions of three variables t, � , �: x(t) = '(t; � ; �) are continuous and in fact even
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locally Lipschitz with respect to all three variables t, � , �.

0.2 Extensions, maximal solutions and their properties.

The condition in the Proposition 4.12 is not necessary, but simple examples show solutions

that blow up in �nite time in future or in the past if this condition is not satis�ed, as for

example the equation x0 = x2:

We consider in this section the problem (1) with f continuous and satisfying conditions

in the Peano theorem implying existence (but not uniqueness) of "local solutions x : I ! Rn

on an interval I � J .

De�nition. p. 106.

An extension (proper extension) of the solution x is a solution ex : eI ! Rn to (1) such

that ex(t) = x(t) 8t 2 I, I � eI, eI 6= I.
De�nition. p. 106. Maximal solution and maximal interval of existence.

The interval I is a maximal interval of existence and x is called maximal solution if x

does not have an extension to a larger interval that is a solution to (1).

We suggest some simple examples of maximal solutions and maximal intervals that can

be calculated explicitely.

Exercise 4.6

J = [�1; 1]; G = R; f : J �G! R:

(� ; �) = (0; 1)

f(t; z) =
3z2
p
1� jtj
2

t 2 [0; 1]
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dz

dt
=

3z2
p
1� t
2

dz

z2
=

3
p
1� t
2

dt

�1
z

= � (1� t)3=2 + C

�1 = �1 + C; (� ; �) = (0; 1)

C = 0

z =
1

(1� t)3=2
; t 2 [0; 1)

t 2 [�1; 0];

dz

dt
=
3z2
p
1 + t

2

dz

z2
=

3
p
1 + t

2
dt

�1
z

= (1 + t)3=2 + C

�1 = 1 + C; (� ; �) = (0; 1)

C = �2
�1
z

= (1 + t)3=2 � 2

z =
1

2� (1 + t)3=2
; t 2 [�1; 0];

The maximal interval Imax = [�1; 1) - is relatively open in [�1; 1]
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Exercise 4.7

J = (�1; 1); G = (�1; 1):

f(t; z) =
1p

(1� t) (1� z)

dz

dt
=

1p
(1� t) (1� z)Z p

1� zdz =

Z
dtp
(1� t)

2

3
(z � 1)

�p
1� z

�
= �2

p
1� t+ C

2

3
(�1) (1) = �2 + C; t = 0; z = 0

4=3 = 2� 2=3 = C
2

3
(z � 1)

�p
1� z

�
= �2

p
1� t+ 4

3
2

3
(1� z)

�p
1� z

�
= 2

p
1� t� 4

3

(1� z)
�p
1� z

�
= 3

p
1� t� 2

(1� z)3=2 = 3
p
1� t� 2

(1� z) =
�
3
p
1� t� 2

�3=2
z = 1�

�
3
p
1� t� 2

�3=2

lim
t!5=9

x(t) = 1

Imax = (�1; 5=9)

Imax is open.
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Proposition 4.4. Openness of maximal intervals.

Let x : I ! G be a maximal solution to I.V.P. (1):The maximal interval I is relatively

open in J (just open if J = R).

It means that I = J \O for some open set O � R.

Theorem 4.8. p. 108. Existence of maximal solutions.

Every solution to (1) can be extended to a maximal solution.

Idea of the proof.( not required at exam)

In the case when solutions are unique (for example f is locally Lipschitz with respect

to x); one can build the maximal interval of existence just by as a union of domains for all

extensions of a given solution. Because of the uniqueness of solutions, trajectories cannot

make branches in this case and this construction leads to a unique maximal solution that at

each time point t attains the value of one of the extensions de�ned at this time point. The

uniqueness of solutions makes that this de�nition is consistent.

In the general case when trajectories can create branches, the union of extensions can

have a tree like geometry, or even be an n-dimensional set. In this case the proof uses Zorn

lemma (see appendix in the course book) to choose a maximal solution. It has an existence

interval including all existence intervals of all extensions, but is possibly not unique.

The following technical lemma is the main tool in several arguments about maximal

solutions.

Lemma 4.9. On extension of a bounded solution with closure in G to the

boundary point of the open existence time interval.

Let x : I ! G be a solution to (1) and denote a = inf I; b = sup I.

(1) If b is in J and not in I (I is open in the right end, the closure of the orbit O+ =

fx(t) : t 2 [� ; b)g is a bounded and therefore compact subset of G, then there is a solution

y : I [ fbg ! G to (1) that is extension of x.

(2) a similar statement is valid for the "backward orbit" O� = fx(t) : t 2 (a; � ]g and

extension of x to the left end point a.

Proof. We prove (1). Let C be the closure of fx(t); t 2 [� ; b)g. Assume that b 2 JnI

and that C is a compact in G. The continuous function f(t; x) must be bounded on the
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compact [� ; b]� C. It implies that the limit

� = � + lim
t!b

Z t

�

f(s; x(s)ds

is well de�ned for continuous and uniformly bounded function under the integral. Then the

solution x(t) can be extended to the closed interval [� ; b] by setting x(b) = �.�
The following Corollary is a direct consequence of the Lemma 4.9 and Proposition 4.4

and gives a su¢ cient condition for a maximal solution to have an in�nite maximal interval

(if J is in�nite) or a maximal interval "i�nite with respect to" J , which meaning is speci�ed

exactly below.

Corollary 4.10, p. 111. "Eternal life" of solutions enclosed in a compact.

If the "future" half - orbit O+ = fx(t) : t 2 Imax \ [� ;1)g of the maximal solution x(t)

is contained in a compact subset of G, then the corresponding maximal interval of existence

Imax is in�nite to the right (future) if [� ;1) � J ), or "in�nite to the right with respect to

J" meaning that the maximal solution exists on [� ;1) \ I = [� ;1) \ J that is the whole

part of J to the right of the initial time � .

Similar statement is valid for the "backward orbit" O� = fx(t) : t 2 (a; � ]g. If it is

contained in a compact subset of G, then the corresponding maximal interval of existence

Imax is in�nite to the left (past) if (�1; � ] � J and is in�nite to the left (past) "with respect

to" J , that means that the maximal solution exists on (�1; � ] \ I = (�1; � ] \ J , that is

the whole part of J to the left of the initial time � .

If the whole orbit O = fx(t) : t 2 Imaxg of the maximal solution x(t) is contained in

a compact subset of G, then the corresponding maximal interval of existence Imax = J

(Imax = R if J = R). It means that the maximal solution x exists both in the whole past

and whole future for the equation.�
Proof. The proof is easy to carry out by a contradiction argument that follows from the

Lemma 4.9 and the fact that a maximal interval must be open (relatively to J).

The following Theorem describes the situation in a sense opposite to the previous Corol-

lary 4.10. It describes the the behaviour of maximal solutions having bounded maximal

interval Imax (if J is R), and in the case when the interval J has bounded endpoints it-
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self, describes maximal solution with maximal interval that is "bounded with respect to J",

meaning that sup Imax < sup J or inf J < inf Imax.�
Theorem 4.11, p.112. "Short living" maximal solutions escape any compact.

Let x : I ! G be a maximal solution to (1) with maximal interval of existence I � J

and assume that I 6= J . Denote � = inf I and ! = sup I, both do not belong to I that must

be open. Then either ! 2 JnI or � 2 JnI .

1) In the �rst case ! 2 JnI for each compact C � G, there is an "escaping time moment"

� 2 I; � < !, such that x(t) escapes C at time � : x(t) =2 C for all t 2 (�; !).

This property can be further geometrically speci�ed. If G 6= Rn the trajectory x(t) tends

to the boundary @G with t! ! (if G is bounded) it can also tend in�nity if G has "branches"

going to in�nity in Rn. If G = Rn, then kx(t)k ! 1; as t! !.

lim
t!!

min fdist(x(t); @G); 1= kx(t)kg = 0; for G 6= Rn (4)

kx(t)k ! 1; as t! !; for G = Rn

2) Similar statements are valid for the limits of x(t) as t ! � for the maximal solution

having maximal interval with the left end point "in the past" � belonging to J .

Proof.

We consider the case 1). The fact that the maximal solution must escape any compact

C follows from the previous Corollary 4.10 by contradiction, because a solution that stays in

a compact must have a maximal interval in�nite to the right or [� ;1) \ I = [� ;1) \ J . It

contradicts to the condition that ! 2 JnI that means that the given maximal x(t) solution

does not reach the maximal possible time in J .

A more so�sticated argument shows that there is a "last visit" time � < !, such that

x(t) never enters C again after this time.

If G is bounded, one can choose a rising sequence of test compact sets fCng1n=1 ; Cn �

Cn+1 � G like "blowing up ballons" tending to the boundary @G of G so that dist(Cn; @G)!

0 as n ! 1 . For each of these sets there is a time �n such that x(t) leaves Cn and

therefore has dist(x(t); @G) < dist(Cn; @G) for t > �n. This construction proves the fact

that dist(x(t); @G)! 0 as t! !.
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In the case of G = Rn one can choose a sequence of test compact sets fCng1n=1 as balls

with centers in the origin and radii rn tending to in�nity with n!1 leading together with

the "escaping property" to conclusion that kx(t)k ! 1; as t! !.

The third case with unbounded G with non-empty boundary @G can be proven by a

combination of the above arguments.�

Proposition 4.12, p. 114 on "eternal" solutions for equations with linear

bound for the right hand side. (proof required at exam)

Consider the initial value problem

x0(t) = f(t; x(t)); x(�) = �

where f : J � RN ! RN ; continupus and locally Lipschitz in x:

Assume that for any compact interval K � J there is L > 0 such that for t 2 K the

following estimate holds for the right hand side:

kf(x; t)k � L(1 + kxk): (5)

If x : I ! RN is a maximal solution to the equation x0(t) = f(t; x(t)), then I = J . In

particular if J = R, the maximal solution is de�ned for all t.

Proof.

De�ne ! = sup I, � = inf I . We use proof by contradiction. Suppose that the statement

of the theorem is not true, for example that ! 2 J and ! =2 I and that � < !.

Let choose the konstant L such that the (5) is valid for t 2 [� ; !].Then, using the integral

form of the I.V.P. and the triangle inequality implies the following estimate

kx(t)k � kx(�)k+
Z t

�

kf(s; x(s))k ds � kx(�)k+ L
Z t

�

(1 + kx(s)k) ds

kx(�)k+ L(t� �) +
Z t

�

kx(s)k ds

for all t 2 t 2 [� ; !) The Grönvalls inequality implies that kx(t)k is uniformly bounded

on [� ; !): It makes that the corresponding orbit fx(t); t 2 [� ; !)g has a bounded and there-
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fore compact closure in RN : The Lemma 4.9 implies that the solution can be extended to

the closed interval [� ; !] and actually to a larger interval beyond !. It contradicts to the

supposition that I is a maximal interval for x(t).�
Proof for the case when � 2 J and � =2 I; � < � is treated similarly.

0.3 Transition map

Existence theorems by Picard and Lindelöf (Theorems 4.17 and 4.22 ) imply that for any

point � ; � 2 J � G there is a unique maximal solution that is convenient to consider as

a function '(t; � ; �) : J � J � G ! G of three variables equal to the maximal solution x

of (1). It is a common situation in applications that one is interested not in properties of

one solution, but in a description of the family of solutions with all possible initial data

as a whole. This type of problems constitute modern theory of di¤erential equations and

dynamical systems and motivates introducing the following notion.

De�nition. p. 126. Transition map. The mapping '(t; � ; �) de�ned above is called

transition map.

In the case of autonomous systems there is no meaning in considering di¤erent initial

times � , because all solutions are functions of the time shift t� � . In this case we consider

transition mappings '(t; �) : J �G! G with '(t; �) = x(t) being the maximal solution of

(2) with initial condition x(0) = �.

Example 4.33 of a transition map.

G = R; f : G! R; f(x) = x2; � = 0; x(t) � 0:

dx

dt
= x2;

Z
dx

x2
=

Z
dt;

�1
x
= t+ C

�1
x
= t� 1

�
; �1

x
=
t� � 1
�

x =
�

(1� t�)
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� = 0; x(t) � 0: � > 0, I� = (�1; 1=�): � < 0, I� = (1=�;1)

'(t; �) =
�

(1� t�) ; D(') = f(t; �) 2 R� R; t� < 1g

The domain D of ' is an open set. '(t; �) is continuous and even locally Lipschitz:

Proposition. Theorem 4.34, p.139 (consequence of Th. 4.29, p. 129)

The domain D = f(t; �) 2 I� �G, � 2 Gg of the transition map '(t; �) is open and

'(t; �) is continuous and even locally Lipschitz in D:

Proof of the Lipschitz property with respect to each of the variables follows from the

integral form of the I.V.P. and for � variable - from an application of Grönwall inequality

similar to the proof of uniqueness of solutions to I.V.P:

Proposition. Translation invariance of the transition mapping for autonomous

systems

(a non-linear version of the Chapman-Kolmogorov relation) Theorem 4.35,

p. 140.

The transition mapping '(t; �) has properties

(1) '(0; �) = � for all � 2 G

(2) if � 2 G and � 2 I� = Imax(�) - maximal interval for �, then

I'(�;�) = I� � �

'(t+ � ; �) = '(t; '(� ; �)); 8t 2 I� � �
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Proof of this statement follows is similar to the proof of the Chapman Kolmogorov rela-

tions for linear systems.
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We consider �rst a trajectory '(:::; �) starting at the point � 2 G and �nishing at time �

at the point '(� ; �) (blue curve). Then we continue this movement from the last point '(� ; �)

during time t (red curve) coming �nally to the point '(t; '(� ; �)) in the right hand side of the

equation in the conclusion. The fact that the equation is autonomous and independent of

time makes that this movement is equivalent to just moving with the �ow starting from the

point � during the total time t+� , that is the left hand side in the equation. The illustration

is borrowed from the proof for the linear systems. The only di¤erence here is that we have a

superposition '(t; '(� ; �)) of transfer mappings in the non-linear case instead of the product

of transfer matrices in the linear case (that is also a superposition for linear mappings).
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