1 Stability of equilibrium points by lineariza-
tion.

1.1 Definition of stable equilibrium points.

We consider in this chapter of the course properties of solutions I.V.P to

nonlinear autonomous systems of ODE

v =f(x), (0)=¢ (1)

where f : G — RY is locally Lipschitz with respect to z. J is and interval
and G C R" is a non-empty open set.

Definition. (p. 115, L.R.) A function f is called locally Lipschitz in G
if for any point y € G there is a neighbourhood V' (y) and a number L > 0
(depending on V(y)) such that for any v,w € V(y)

1/ (v) = f(w)]] < Ljv = w]]

Example. Functions having continuous partial derivatives are locally
Lipschitz function. (Exercise)
Definition. A solution x(t) : I — R is called maximal solution if it

cannot be extended to a larger time interval.

Claim (important!)

We will formulate later a theorem by Picard and Lindelsf, that implies
that under these conditions the I.V.P. above has a unique solution for any
¢ € G on some, might be small time interval (—J,0). (Theorems 4.17, p.
118; Theorem 4.22, p.122.

Definition. A point z, € G is called an equilibrium point to the equation

(1) if f(z.) =0,

The corresponding solution z(t) = z, is called an equilibrium solution.
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Definition. (5.1, p. 169, L.R.)

The equilibrium point x, is said to be stable if, for any ¢ > 0, there is
d > 0 such that, for any maximal solution z : I — G to (1) such that 0 € I
and ||z(0) — .|| < 0 we have ||z(t) — z,|| < e forany t € INR,. Below a

picture is given in the case x, = 0.

——

Figure 5.1 Stable equilibrium

Definition. (5.14, p. 182, L.R.)

The equilibrium point z, of (1) is said to be attractive if there is § > 0 such
that for every £ € G with || — x,| < 0 the following properties hold: the
solution z(t) = ¢(t,€) to LV.P. with 2(0) = £ exists on R and ¢(t,&) — .
as t — oo.

Definition. We say that the equilibrium z, is asymptotically stable if it
is both stable and attractive.

In the analysis of stability we will always choose a system of coordinates
so that the origin coinsides with the equilibrium point. In the course book
this agreement is applied even in the definition of stability.

Definition. The equilibrium point z, is said to be unstable if it is not
stable. It means that there is a g > 0, such that for any 0 > 0 there is point
x(0) : [|2(0) — z.|| < d such that for some ty € I we have ||z(tg) — x| > £o.(a
formal negation to the definition of stability)



1.2 Stability and unstability of the equilibrium point

in the origin for autonomous linear systems.

Origin is an equilibrium point for all linear systems of ODE. If the matrix
A is degenerate, there can be even lines or hyperplanes of equilibrium points
except the origin, corresponding to the non-trivial kernel of the matrix A.
0 -2
2 0
Eigenvalues of the matrix A are A\ = £2i are purely imaginary (and non-

Example. Consider the system 2/(t) = Az(t) with A =

zero). Therefore there are no other equilibrium points except the origin. The
cos(2t) —sin(2¢

exp(At) = ‘() (2¢)
sin(2t)  cos(2t)

with initial data [¢,,&,]" is

. The solution to the initial value problem

. _ &1 cos(2t) — &, sin(2t) % (2t) - 52 (Qt) _
Q [ &, sin(2t) + &, cos(2t) ] € [ % in(2t) 2 0s(2t) |

_ g cos(f) cos(2t) — sin(0) s _ el cos(6 + 2t)

B cos(f) sin(2t) + sin(f) c sin(f + 2) |

with cos(6) = % Therefore orbits of solutions are circles around the origin
with the radius equal to |£|. It implies that the equlibrium point in the origin
is stable. € in the definition of stability can be chosen equal to §.

Example.

An example on instability: saddle point. There are trajectories (not all)
that leave a neighbourhood |[z|| < d of the origin for initial conditions &
arbitrary close to the origin: for any £ > 0 and 0 < ||¢|| < € after some time
T..

11
2

e [}
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r' = Ar with A = , characteristic polynomial: \* — X\ — 2 = 0;

e}



r=Cie* + Coe™!

")

choosing a ball ||z|| < 1, and for arbitrary ¢ > 0, £ = ¢ [

1/v2
1/v/2

1/V2
1/v/2

] will leave this

], €11

we see that the corresponding solution z(t) = e'e [

ball after time 7T, = —Ine.

A classification of phase portraits for non-degenerate linear au-
tonomous systems in plane in terms of the determinant and the
trace of the matrix A.

Stable (unstable) nodes when eigenvalues Aj, Ay are real, different, nega-
tive (positive). det(A) < 1(tr(A))?%; det(A) > 0; tr(A) <0, (tr(A) > 0).

Saddle (always unstable) when eigenvalues Aj, Ay are real, with different
signs. det(A) < 0.

Stable (unstable) focus when A;, Ay are complex, with negative (positive)
real parts. det(A) > 1(tr(A))% #0, tr(4) <0 (tr(A4) > 0).

Stable (unstable) improper node when eigenvalue )\, is real negative (pos-

itive) with multiplicity 2 having only one linearly independent eigenvector.
det(A) = 1(tr(A))?, tr(4) <0 (tr(A) > 0).
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Center (stable but not asymptotically stable) when Aj, Ay are complex
purely imaginary. tr(A) =0 ; det(A) >0
Stable (unstable) star, when eigenvalue A; is real negative (positive)

with multiplicity 2 having two linearly independent eigenvectors. det(A) =
1(tr(A))?, tr(A) <0 (tr(A) > 0).

det(A)

Summary of phase portraits for the system x'=Ax d i
The division line is det(A)= ¥ (tr(A)E. spending on tr(A) and det(A).

More general conclusions about stability or instability of the equilibrium
in the origin for autonomous linear systems of ODE follow immediately from
the Corollary 2.13 in L.&R.

Theorem. (Propositions 5.23, 5.24, 5.25, pp. 189-190, L.R.)

Let A € CV*N be a complex matrix.

Then three following statements are valid for the system a/(t) = Ax(t)

1. The origin is asymptotically stable if and only if Re A < 0 for all A €
a(A).



2. The origin is exponentially stable if and only if ReA < 0 for all A €
a(A).

3. The equilibrium point in the origin is stable if and only if Re A < 0 for

all A € o(A) and all purely imaginary eigenvalues are semisimple.

Definition. Matrix A with the property Re A < 0 for all A € o(A) is

called Hurwitz matrix.

1.3 Inhomogeneous linear systems with constant coef-

ficients.

Corollary. Duhamel formula, autonomous case. (Corollary 2.17, p.
43)

Consider the inhomogeneous system
Z'(t) = Az + b(t)

with continuous or piecewise continuous function b : R — RY. Then the

unique solution to the I.V.P. with initial data
2(1) = ¢
is represented by the Duhamel formula:
t
z(t) = exp(At)¢ —|—/ exp(A(t — 0))b(o)do (2)

Proof to the Corollary: check that the formula gives a solution and show

that it is unique.



) = exp(ang+ [ oAl )g(s)is
:exp(At)§+eXp(At)/o exp(—As)g(s)ds
= exp(At) {54—/0 eXp(—As)g(s)ds]

'(t) = Aexp(At) {£+/Ot exp(—As)g(s)ds} + exp(At) exp(—At)g(t)
= Ax(t) +9(t)

Difference z(t) = x(t) — y(t) between two solutions x(t) and y(t) satisfies
Az(t) and zero initial condition z(0) =0
and the integral equation: 2(t) = |,
using the Gronwall inequality, implies that z = 0.

the homogeneous systems z/(t)

Az(s)ds. The same reasoning as before,

1.4 Stability of equilibrium points to linear systems

perturbed by a small right hand side.

Theorem (Theorem 5.27, p. 193, L.R.) Let G C RY be a nonempty open
subset with 0 € G. Consider the differential equation

'(t) = Az + h(z) (3)

where A € RV*N and h : G — R" is a continuous function satisfying

lim hiz) =

=0 ol

(4)

If A is Hurwitz, that is Re A < 0 for all A € 0(A), then 0 is an asymptotically
stable equilibrium of 3.
Moreover, there is A > 0 and C' > 0 and a > 0 such that for ||£]| < A



the solution z(t) to the initial value problem with initial data

2(0) = ¢

satisfies the estimate
z(t)]| < C €]l

Proof. (This proof is required at the exam)
If ReA < 0 for all A € 0(A) then there is 5 > 0 such that Re A < —f for
all A € 0(A) and
lexp(At)|| < Ce™ (5)

for some constant C' > 0.
We can choose € > 0 such that C'e < § and using (4) choose d. such that
for ||z]] < d.

[(2)]| < e |l=] (6)

We know that the solution to the equation (3) exists on some time interval
t €10,9).
We apply Duhamel formula (2) for solutions to (3):

t
x(t) = exp(At)¢ + / exp(A(t — 0))h(z(0))do
0
As long as ||z(t)|| < d. we apply the triangle inequality for integrals and

estimates (5) and (6):
t
lz()]] < Ce™™ Ji¢] +/ Ce Pt |la(o)|| do
0

Introduce function y(t) = ||(¢)|| €**. Then multiplying the last inequality by

ePt we arrive to



()] < C el + / (C2) y(o)do

The Gronwall inequality implies that

ly@)Il < Cllg]] '

and
z(t)]| < Cllg|fe” =" (7)

It is valid as long as ||z(t)|| < .. Now we can choose a = § — Ce > 0,
A =16./C and ||¢|| < A. This choice of initial conditions implies that

[z(@®)] < de, (8)

(Important theoretical argument!!!)

This estimate implies an important conclusion that the solution must
exist in fact on the whole R, , because supposing opposite, namely that there
is some maximal existence time t,.x leads to a contradiction.

Let consider this important argument. It consists of two steps.

1) using the continuity and boundedness of the solution x () on [0, tyax)
we can extend x(t) up to the point tp.x as T(tmax) = 17 = limy_,_ . ().

2) Now using the existence theorem, we conclude that there is a solution

y(t) to the equation

y'(t) = Ay +0b(t)

on the time interval [tyayx, tmax + 0) With the initial condition y(fmax) = 7 at
time tyax. This solution is evidently an extension of the original solution x(t)
to a larger time interval, that contradicts to ower supposition. Therefore the

solution x(t) can be extended to the whole R, and satisfies the estimate (8).
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It in turn implies that this solution must satisfy the desired estimate
lz(lF < Cligll e

and the asymptotic stability of the equilibrium point in the origin.ll

This theorem implies immediately the following result on stability of equi-
librium points by linearization.

Theorem. (Corollary 5.29, p. 195) On stability of equilibrium points by
linearization.

Let f: G — RY, G c R" is non empty open set with 0 € G , f be
continuous and f(0) = 0.Let f be differentiable in 0 and A be the Jacoby
matrix of f in the point 0, a = D(f)(0):

_9fi

Aij N 8xj

0), i,j=1,.N

If A is a Hurwitz matrix (all eigenvalues A\ € o(A) have Re A < 0), then

the equilibrium point of the system

in the origin is asymptotically stable.

Proof. Consider the function h(z) = f(z) — Az. Then by the definition
of derivatives h(z)/||z]| — 0 as z — 0. An application of the theorem
about stability of a small perturbation of a linear system to the function
f(z) = Az + h(z) proves the the claim. H

The following general theorem by Grobman and Hartman that we for-
mulate without proof is a strong result on connection between solutions to a

nonlinear system

2(t) = flz(t)), (9)
2(0) = ¢ (10)

10



with right hand side f(z) close to an equilibrium point z,, f(z.) = 0 and

solutions to the linearized system

y(0) = (- (12)

with constant matrix A that is Jacobi matrix of the right hand sisde f in the
equilibrium point x,, A = D(f)(z.):
O

5= (z.), i,j=1,..N

Definition. An equilibrium point z, of the system (9) is called hyperbolic
if for all eigenvalues A € o(A) it is valid that Re A # 0.

Theorem. (Grobman-Hartman)

Let f € CYB), in Bg(z,) = {¢:||E—a.||<R } C G and z, be a
hyperbolic equilibrium point of (9). Then there are neighbourhoods U (z,)
and Us(z,) of z, and an invertible continuous mapping R : Uy (z.) — Us (x4)
such that R maps shifted solutions e!(¢ — x,) to the linearized system (11)
onto solutions z(t) = ¢(t, R(¢)) of the non-linear system (9) with £ = R(():

R (0.4 eM(C = .)) = o(t, R(Q))

and back

R (o(t,€)) = wu + (R (€) — w1)

From the intuitive point of view it means that phase portraits of the non-
linear and linearized systems are topologically equivalent in a neighbourhood
of the hyperbolic equilibrium point x,.

Various classes of topologically equivalent equilibrium points in the plane:

a) asymptotically stable, b) center, c) saddle point, d) unstable.
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Example on application of Grobman - Hartman theorem

Consider the system

T = —%(9«"1 + x9) — a7

Ty = %(]31 — 31’2)
0.5(—2/3 —2/9) — 4/9 = 0.0

It has two equilibrium points: one in the origin (0, 0) and one is (—2/3, —2/9).We
find them by expressing x; = 3z, , from the equation %(:cl —315) = 0, substi-
tuting to the equation —%(xl +29) —2? = 0, and solving the quadratic equa-
tion —1(3x2 + x2) — 923 = 0 for x5, —1(3za+22) — 923 = —x5 (922 + 2) = 0.

and its linearization in the origin:

t) = —3 (1 + 22)

xh = %(ml — 3x9)

N =

The linearized system has matrix A =

] , characteristic polyno-

N[ =
N[ N[

1
mial: A\>+2\+1 = 0, eigenvalues: A1,2 = —1. The only eigenvector is

The origin is a stable improper node for both systems. This equilibrium
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point is asymptotically stable.

On the other hand we see that another equilibrium (—2/3, —2/9) of the
non-linear system seems to be a saddle point.

We check it now. For an arbitrary point we need first to calculate the
Jacoby matrix of the right hand sisde in the system =’ = f(x) in an arbitrary
point x € R?

ofi
Dfly @) = 5@
B 6_51(9;) B_Q(x) | 1222 —1/2
[Df](x) = [%_ﬁ(@ %_g(x)]_[ 1/2 —3/2]

Calculating the Jacoby matrix in the second equilibrium point (—2/3, —2/9)

we get the matrix for the linearization of the right hand side in this point:

|

The characteristic polynomial is p(A) = A% — Mtr(A) + det(A). tr(A) =
5/6 —3/2=—2. det(4) =2 (-2) — 1 (-1) = —1. Therefore p(A) = \*+
%)\ — 1. Eigenvalues are real and have different signs because the determinant

A:

~1/2-2(-2/3) -1/2 |
1/2 —3/2 |

N|—= Dot
Mo N[

is negative. We don to need to calculate them to make these conclusions.

Therefore the linearized system
y' = Ay

has a saddle point in the origin. The non-linear system also has a sad-
dle point configuration in the phase portrait close to the equilibrium point
(—2/3,—2/9) according to the Grobman-Hartman theorem. This equilib-
rium point is unstable. If we like to sketch a more precise phas portrait for

the linearized system we can calculate eigenvalues and eigenvectors. But we
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can only guess the global phase protrait for the non-linear system (how local
phase portraits connect with each other). We give below phase portraits for
the non-linear system and for linearized systems around each of equilibrium

points.

Phase plane for a nonlinear equation Phase plane for the linear equation

25T

5T

25t

Phase plane for the linearized system around the equilibrium point

(—2/3,-2/9)
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Counterexample
A system such that the linearized system has a center (stable) but the
non-linear has a non stable equilibrium point.

Cosider the system

d

% = 29+ (22 + 221y
d

% = —I + (l’% + .I’g)l'g

The origin (0,0) is an equilibrium point and the linearized system in this

, 0 1
r = T
-1 0

The origin is a center that is a stable euilibrium point.

point has the form

Consider the equation for r*(t) = x%(t)+23(t).We derive it by multiplying
the first equation by x; and the second by x5 and considering the sum of the

equations leading to
Ld , 241} 2
S22t = (Pt
Sor?(0) = ((1)
We see that the solution to this equation with separable variables with arbi-

trary initial data r(0) is

r*(0)

) =1 2r2(0)t

The solution tends to infinity with ¢ rising and blows up in finite time.

The equilibrium (0,0) to the nonlinear system is unstable. The phase
portraits of the nonlinear system and the linearized system are qualitatively
different in this example when eigenvalues to the Jacoby matrix of the right
hand side of the nonlinear system in the equilibrium point have real parts

equal to zero.
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