
1 Stability of equilibrium points by lineariza-

tion.

1.1 De�nition of stable equilibrium points.

We consider in this chapter of the course properties of solutions I.V.P to

nonlinear autonomous systems of ODE

x0 = f(x); x(0) = � (1)

where f : G ! RN is locally Lipschitz with respect to x. J is and interval
and G � RN is a non-empty open set.
De�nition. (p. 115, L.R.) A function f is called locally Lipschitz in G

if for any point y 2 G there is a neighbourhood V (y) and a number L > 0

(depending on V (y)) such that for any v; w 2 V (y)

kf(v)� f(w)k � L kv � wk

Example. Functions having continuous partial derivatives are locally

Lipschitz function. (Exercise)

De�nition: A solution x(t) : I ! RN is called maximal solution if it

cannot be extended to a larger time interval.

Claim (important!)
We will formulate later a theorem by Picard and Lindelöf, that implies

that under these conditions the I.V.P. above has a unique solution for any

� 2 G on some, might be small time interval (��; �). (Theorems 4.17, p.
118; Theorem 4.22, p.122.

De�nition: A point x� 2 G is called an equilibrium point to the equation
(1) if f(x�) = 0:

The corresponding solution x(t) � x� is called an equilibrium solution.
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De�nition. (5.1, p. 169, L.R.)
The equilibrium point x� is said to be stable if, for any " > 0; there is

� > 0 such that, for any maximal solution x : I ! G to (1) such that 0 2 I
and kx(0)� x�k � � we have kx(t)� x�k � " for any t 2 I \ R+. Below a
picture is given in the case x� = 0.

De�nition. (5.14, p. 182, L.R.)
The equilibrium point x� of (1) is said to be attractive if there is � > 0 such

that for every � 2 G with k� � x�k � � the following properties hold: the

solution x(t) = '(t; �) to I.V.P. with x(0) = � exists on R+and '(t; �)! x�

as t!1.
De�nition. We say that the equilibrium x� is asymptotically stable if it

is both stable and attractive.

In the analysis of stability we will always choose a system of coordinates

so that the origin coinsides with the equilibrium point. In the course book

this agreement is applied even in the de�nition of stability.

De�nition. The equilibrium point x� is said to be unstable if it is not

stable. It means that there is a "0 > 0; such that for any � > 0 there is point

x(0) : kx(0)� x�k � � such that for some t0 2 I we have kx(t0)� x�k > "0:(a
formal negation to the de�nition of stability)
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1.2 Stability and unstability of the equilibrium point

in the origin for autonomous linear systems.

Origin is an equilibrium point for all linear systems of ODE. If the matrix

A is degenerate, there can be even lines or hyperplanes of equilibrium points

except the origin, corresponding to the non-trivial kernel of the matrix A.

Example. Consider the system x0(t) = Ax(t) with A =

"
0 �2
2 0

#
:

Eigenvalues of the matrix A are � = �2i are purely imaginary (and non-
zero). Therefore there are no other equilibrium points except the origin. The

exp(At) =

"
cos(2t) � sin(2t)
sin(2t) cos(2t)

#
. The solution to the initial value problem

with initial data [�1; �2]
T is

x(t) =

"
�1 cos(2t)� �2 sin(2t)
�1 sin(2t) + �2 cos(2t)

#
= j�j

"
�1
j�j cos(2t)�

�2
j�j sin(2t)

�1
j�j sin(2t) +

�2
j�j cos(2t)

#
=

= j�j
"
cos(�) cos(2t)� sin(�) sin(2t)
cos(�) sin(2t) + sin(�) cos(2t)

#
= j�j

"
cos(� + 2t)

sin(� + 2t)

#

with cos(�) = �1
j�j : Therefore orbits of solutions are circles around the origin

with the radius equal to j�j. It implies that the equlibrium point in the origin
is stable. " in the de�nition of stability can be chosen equal to �.

Example.
An example on instability: saddle point. There are trajectories (not all)

that leave a neighbourhood kxk < d of the origin for initial conditions �

arbitrary close to the origin: for any " > 0 and 0 < k�k � " after some time
T".

r0 = Ar with A =

"
1 1

2 0

#
, characteristic polynomial: �2 � �� 2 = 0;

eigenvectors:

("
1

�2

#)
$ �1;

("
1

1

#)
$ 2
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r = C1e
2t

"
1

1

#
+ C2e

�t

"
1

�2

#

choosing a ball kxk � 1; and for arbitrary " > 0; � = "
"
1=
p
2

1=
p
2

#
, k�k

we see that the corresponding solution x(t) = et"

"
1=
p
2

1=
p
2

#
will leave this

ball after time T" = � ln ".
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A classi�cation of phase portraits for non-degenerate linear au-
tonomous systems in plane in terms of the determinant and the
trace of the matrix A.
Stable (unstable) nodes when eigenvalues �1; �2 are real, di¤erent, nega-

tive (positive). det(A) < 1
4
(tr(A))2; det(A) > 0; tr(A) < 0, ( tr(A) > 0):

Saddle (always unstable) when eigenvalues �1; �2 are real, with di¤erent

signs. det(A) < 0:

Stable (unstable) focus when �1; �2 are complex, with negative (positive)

real parts. det(A) > 1
4
(tr(A))2 6= 0; tr(A) < 0 ( tr(A) > 0):

Stable (unstable) improper node when eigenvalue �1 is real negative (pos-

itive) with multiplicity 2 having only one linearly independent eigenvector.

det(A) = 1
4
(tr(A))2; tr(A) < 0 ( tr(A) > 0):
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Center (stable but not asymptotically stable) when �1; �2 are complex

purely imaginary. tr(A) = 0 ; det(A) > 0

Stable (unstable) star, when eigenvalue �1 is real negative (positive)

with multiplicity 2 having two linearly independent eigenvectors. det(A) =
1
4
(tr(A))2; tr(A) < 0 ( tr(A) > 0):

More general conclusions about stability or instability of the equilibrium

in the origin for autonomous linear systems of ODE follow immediately from

the Corollary 2.13 in L.&R.

Theorem. (Propositions 5.23, 5.24, 5.25, pp. 189-190, L.R.)
Let A 2 CN�N be a complex matrix.
Then three following statements are valid for the system x0(t) = Ax(t)

1. The origin is asymptotically stable if and only if Re� < 0 for all � 2
�(A).
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2. The origin is exponentially stable if and only if Re� < 0 for all � 2
�(A).

3. The equilibrium point in the origin is stable if and only if Re� � 0 for
all � 2 �(A) and all purely imaginary eigenvalues are semisimple.

De�nition. Matrix A with the property Re� < 0 for all � 2 �(A) is
called Hurwitz matrix.

1.3 Inhomogeneous linear systems with constant coef-

�cients.

Corollary. Duhamel formula, autonomous case. (Corollary 2.17, p.
43)

Consider the inhomogeneous system

x0(t) = Ax+ b(t)

with continuous or piecewise continuous function b : R ! RN . Then the
unique solution to the I.V.P. with initial data

x(�) = �

is represented by the Duhamel formula:

x(t) = exp(At)� +

Z t

�

exp(A(t� �))b(�)d� (2)

Proof to the Corollary: check that the formula gives a solution and show
that it is unique.
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x(t) = exp(At)� +

Z t

0

exp(A(t� s))g(s)ds

= exp(At)� + exp(At)

Z t

0

exp(�As)g(s)ds

= exp(At)

�
� +

Z t

0

exp(�As)g(s)ds
�

x0(t) = A exp(At)

�
� +

Z t

0

exp(�As)g(s)ds
�
+ exp(At) exp(�At)g(t)

= Ax(t) + g(t)

Di¤erence z(t) = x(t)� y(t) between two solutions x(t) and y(t) satis�es
the homogeneous systems z0(t) = Az(t) and zero initial condition z(0) = 0

and the integral equation: z(t) =
R t
0
Az(s)ds. The same reasoning as before,

using the Grönwall inequality, implies that z � 0.

1.4 Stability of equilibrium points to linear systems

perturbed by a small right hand side.

Theorem (Theorem 5.27, p. 193, L.R.) Let G � RN be a nonempty open
subset with 0 2 G. Consider the di¤erential equation

x0(t) = Ax+ h(x) (3)

where A 2 RN�N and h : G! RN is a continuous function satisfying

lim
z!0

h(z)

kzk = 0: (4)

If A is Hurwitz, that is Re� < 0 for all � 2 �(A), then 0 is an asymptotically
stable equilibrium of 3.

Moreover, there is � > 0 and C > 0 and � > 0 such that for k�k < �
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the solution x(t) to the initial value problem with initial data

x(0) = �

satis�es the estimate

kx(t)k � C k�k e��t

Proof. (This proof is required at the exam)
If Re� < 0 for all � 2 �(A) then there is � > 0 such that Re� < �� for

all � 2 �(A) and
kexp(At)k � Ce��t (5)

for some constant C > 0.

We can choose " > 0 such that C" < � and using (4) choose �" such that

for kzk < �"

kh(z)k < " kzk (6)

We know that the solution to the equation (3) exists on some time interval

t 2 [0; �).
We apply Duhamel formula (2) for solutions to (3):

x(t) = exp(At)� +

Z t

0

exp(A(t� �))h(x(�))d�

As long as kx(t)k < �" we apply the triangle inequality for integrals and

estimates (5) and (6):

kx(t)k � Ce��t k�k+
Z t

0

Ce��(t��)" kx(�)k d�

Introduce function y(t) = kx(t)k e�t. Then multiplying the last inequality by

e�t we arrive to
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ky(t)k � C k�k+
Z t

0

(C") y(�)d�

The Grönwall inequality implies that

ky(t)k � C k�k e(C")t

and

kx(t)k � C k�k e�(��C")t (7)

It is valid as long as kx(t)k < �". Now we can choose � = � � C" > 0,
� = 1

2
�"=C and k�k < �: This choice of initial conditions implies that

kx(t)k � �"; (8)

(Important theoretical argument!!!)
This estimate implies an important conclusion that the solution must

exist in fact on the whole R+, because supposing opposite, namely that there
is some maximal existence time tmax leads to a contradiction.

Let consider this important argument. It consists of two steps.

1) using the continuity and boundedness of the solution x(t) on [0; tmax)

we can extend x(t) up to the point tmax as x(tmax) = � = limt!tmax x(t).

2) Now using the existence theorem, we conclude that there is a solution

y(t) to the equation

y0(t) = Ay + b(t)

on the time interval [tmax; tmax + �) with the initial condition y(tmax) = � at

time tmax. This solution is evidently an extension of the original solution x(t)

to a larger time interval, that contradicts to ower supposition. Therefore the

solution x(t) can be extended to the whole R+ and satis�es the estimate (8).
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It in turn implies that this solution must satisfy the desired estimate

kx(t)k � C k�k e��t

and the asymptotic stability of the equilibrium point in the origin.�
This theorem implies immediately the following result on stability of equi-

librium points by linearization.

Theorem. (Corollary 5.29, p. 195) On stability of equilibrium points by
linearization.

Let f : G ! RN , G � RN is non empty open set with 0 2 G , f be

continuous and f(0) = 0:Let f be di¤erentiable in 0 and A be the Jacoby

matrix of f in the point 0; a = D(f)(0):

Aij =
@fi
@xj

(0); i; j = 1; :::N

If A is a Hurwitz matrix (all eigenvalues � 2 �(A) have Re� < 0), then
the equilibrium point of the system

x0(t) = f(x(t))

in the origin is asymptotically stable.

Proof. Consider the function h(z) = f(z)� Az. Then by the de�nition
of derivatives h(z)= kzk ! 0 as z ! 0. An application of the theorem

about stability of a small perturbation of a linear system to the function

f(z) = Az + h(z) proves the the claim. �
The following general theorem by Grobman and Hartman that we for-

mulate without proof is a strong result on connection between solutions to a

nonlinear system

x0(t) = f(x(t)); (9)

x(0) = � (10)
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with right hand side f(x) close to an equilibrium point x�, f(x�) = 0 and

solutions to the linearized system

y0(t) = Ay (11)

y(0) = � � x� (12)

with constant matrix A that is Jacobi matrix of the right hand sisde f in the

equilibrium point x�, A = D(f)(x�):

Aij =
@fi
@xj

(x�); i; j = 1; :::N

De�nition. An equilibrium point x� of the system (9) is called hyperbolic
if for all eigenvalues � 2 �(A) it is valid that Re� 6= 0.
Theorem. (Grobman-Hartman)
Let f 2 C1(B), in BR(x�) = f� : k� � x�k < R g � G and x� be a

hyperbolic equilibrium point of (9). Then there are neighbourhoods U1(x�)

and U2(x�) of x� and an invertible continuous mapping R : U1(x�)! U2 (x�)

such that R maps shifted solutions eAt(� � x�) to the linearized system (11)

onto solutions x(t) = '(t; R(�)) of the non-linear system (9) with � = R(�):

R
�
x� + e

At(� � x�)
�
= '(t; R(�))

and back

R�1 ('(t; �)) = x� + e
At(R�1 (�)� x�)

From the intuitive point of view it means that phase portraits of the non-

linear and linearized systems are topologically equivalent in a neighbourhood

of the hyperbolic equilibrium point x�.

Various classes of topologically equivalent equilibrium points in the plane:

a) asymptotically stable, b) center, c) saddle point, d) unstable.
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Example on application of Grobman - Hartman theorem
Consider the system

x01 = �1
2
(x1 + x2)� x21

x02 =
1
2
(x1 � 3x2)

-0:5(�2=3� 2=9)� 4=9 = 0:0

It has two equilibrium points: one in the origin (0; 0) and one is (�2=3;�2=9):We
�nd them by expressing x1 = 3x2 , from the equation 1

2
(x1�3x2) = 0, substi-

tuting to the equation �1
2
(x1+x2)�x21 = 0, and solving the quadratic equa-

tion �1
2
(3x2+x2)� 9x22 = 0 for x2. �1

2
(3x2+x2)� 9x22 = �x2 (9x2 + 2) = 0.

and its linearization in the origin:

x01 = �1
2
(x1 + x2)

x02 =
1
2
(x1 � 3x2)

The linearized system has matrix A =

"
�1
2
�1
2

1
2

�3
2

#
, characteristic polyno-

mial: �2+2�+1 = 0, eigenvalues: �1;2 = �1. The only eigenvector is
"
1

1

#
.

The origin is a stable improper node for both systems. This equilibrium
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point is asymptotically stable.

On the other hand we see that another equilibrium (�2=3;�2=9) of the
non-linear system seems to be a saddle point.

We check it now. For an arbitrary point we need �rst to calculate the

Jacoby matrix of the right hand sisde in the system x0 = f(x) in an arbitrary

point x 2 R2

[Df ]ij (x) =
@fi
@xj

(x)

[Df ] (x) =

"
@f1
@x1
(x) @f1

@x2
(x)

@f2
@x1
(x) @f2

@x2
(x)

#
=

"
�1=2� 2x1 �1=2

1=2 �3=2

#

Calculating the Jacoby matrix in the second equilibrium point (�2=3;�2=9)
we get the matrix for the linearization of the right hand side in this point:

A =

"
�1=2� 2(�2=3) �1=2

1=2 �3=2

#
=

"
5
6
�1
2

1
2
�3
2

#

The characteristic polynomial is p(�) = �2 � �tr(A) + det(A). tr(A) =

5=6� 3=2 = �2
3
. det(A) = 5

6

�
�3
2

�
� 1

2

�
�1
2

�
= �1: Therefore p(�) = �2 +

2
3
��1. Eigenvalues are real and have di¤erent signs because the determinant
is negative. We don to need to calculate them to make these conclusions.

Therefore the linearized system

y0 = Ay

has a saddle point in the origin. The non-linear system also has a sad-

dle point con�guration in the phase portrait close to the equilibrium point

(�2=3;�2=9) according to the Grobman-Hartman theorem. This equilib-
rium point is unstable. If we like to sketch a more precise phas portrait for

the linearized system we can calculate eigenvalues and eigenvectors. But we
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can only guess the global phase protrait for the non-linear system (how local

phase portraits connect with each other). We give below phase portraits for

the non-linear system and for linearized systems around each of equilibrium

points.
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Phase plane for the linearized system around the equilibrium point

(�2=3;�2=9)
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Counterexample
A system such that the linearized system has a center (stable) but the

non-linear has a non stable equilibrium point.

Cosider the system

dx1
dt

= x2 + (x
2
1 + x

2
2)x1

dx1
dt

= �x1 + (x21 + x22)x2

The origin (0; 0) is an equilibrium point and the linearized system in this

point has the form

x0 =

"
0 1

�1 0

#
x

The origin is a center that is a stable euilibrium point.

Consider the equation for r2(t) = x21(t)+x
2
2(t):We derive it by multiplying

the �rst equation by x1 and the second by x2 and considering the sum of the

equations leading to
1

2

d

dt
r2(t) =

�
r2(t)

�2
We see that the solution to this equation with separable variables with arbi-

trary initial data r(0) is

r2(t) =
r2(0)

1� 2r2(0)t

The solution tends to in�nity with t rising and blows up in �nite time.

The equilibrium (0; 0) to the nonlinear system is unstable. The phase

portraits of the nonlinear system and the linearized system are qualitatively

di¤erent in this example when eigenvalues to the Jacoby matrix of the right

hand side of the nonlinear system in the equilibrium point have real parts

equal to zero.

15


