
1 User Guide to hunting positively - invariant sets and

! - limit sets.

We consider �ows or dynamical systems corresponding to autonomous di¤erential equations

_x = f(x); f : G! RN

A system has naturally many positively - invariant sets, for example the whole domain G is always

an positively - invariant set, but it is not very interesting. We like to �nd possibly narrow invariant sets

showing more precisely where trajectories or solutions to the equation tend when t tends to the upper

bound of the maximal time interval (usually t!1 if the trajectory is bounded and has compact closure).

A general idea that is used to answer many questions about behaviour of solutions (trajectories) of

the equations, is the idea of test functions. One checks if the velocities f(x) are directed inside or outside

with respect to the sets like Q = fx 2 U : V (x) � Cg or Q = fx 2 U : V (x) � Cg de�ned by some simple
test functions V : U ! R, U � G: A more re�ned variant of this idea by Lyapunov is to �nd test a

function that is monotone along the trajectories '(t; �) of the equation. The advantage of the idea with

test functions is that one does not need to solve the equation to use it.

How to �nd an positively - invariant set?

Method 1. We �nd a test function V (x) that has some level sets @Q = fx : V (x) = Cg that are
closed curves (or surfaces in higher dimensions) enclosing a bounded domain Q. Typical examples are

V (x; y) = x2 + y2=R2 - circle or radius R; or V (x; y) = x2

a2
+ y2

b2
=1 - ellipse, or more complicated ones as

V (x; y) = x6 + ay4 - smoothed rectangle shape or squeezed ellipse, V (x; y) = x2 + xy + y2 = C - ellipse

rotated in �=4 and having axes A and B related as A=B =
p
3etc.

� To show that a particular level set @Q bounds an positively - invariant set Q we check the sign of the
directional derivative of V along the velocity in the equation: Vf (x) = (rV � f) (x) for all points on the
level set fV (x) = Cg for a particular constant C.
� The sign of Vf (x) shows if the trajectories go to the same side of the level set as the gradient rV (if

V (x) > 0) or to the opposite side (if Vf (x) < 0).

� Then if V (x) is rising for x going out of Q, and Vf (x) < 0 then the domain Q inside this level set @Q
(curve in the plane case) will be positively - invariant. Similarly if V (x) is decreasing out of this level set,

and Vf (x) < 0 on the level set @Q then the domain Q inside this level set will be positively - invariant.

In the opposite case the complement to Q that is RNnQ will be positively - invariant and trajectories
'(t; �) starting in this complement: � 2 RNnQ will never enter Q.
First integrals. A very particular case of test functions are functions that are constant on all trajec-

tories '(t; �) of the system. It means that d
dt
V ('(t; �)) = Vf (x) � 0. Usually but not always, such test

functions have the meaning of the total energy in the system. In this case all level sets of the �rst integral

are invariant sets, because velocities f(x) are tangent vectors to the level sets in this case.

Method 2. If it is di¢ cult to guess a simple test function giving one closed formula for the boundary
of an positively - invariant set as in the Method 1, then one can try to identify a boundary for an positively
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- invariant set as a curve (or a surface in higher dimensions) consisting of a number of simple peaces, for

example straight segments.

The simplest positively - invariant set of such kind would be a rectangle (a rectangular box in higher

dimensions) with sides parallel to coordinate axes. Then to check that this rectangle is an positively -

invariant one needs just to check the sign of x or y - components of f(x) on these segments, showing that

trajectories go inside or outside of the rectangle.

Application to Poincare Bendixson theorem
One searchs often positively - invariant sets with special properties. For example to apply the Poincare-

Bendixson theorem one needs to �nd an positively - invariant set without equilibrium points. On the other

hand it is known that any periodic orbit in plane encloses at least one equilibrium point. It means that a

typical positively - invariant set for applying the Poincare-Bendixson theorem should be ring shaped with

at least one hole in the middle including a repelling non stable equilibrium point.

Check list for application of the Poincare-Bendixson theorem.

� One starts with applying one of the two methods above to �nd a compact positively - invariant set
Q with at least one equilibrium point inside it. Such set Q does not satisfy conditions in the Poincare-

Bendixson theorem yet.

� To identify holes around the equilibriums in the middle (one must �nd all such equilibrium points at
the end !), one needs often to �nd one more test function for each of them, to show that trajectories do

not enter a neighbourhood of each of the equilibriums.

� Alternatively one can use the linearization to show that this equilibrium is repeller and therefore

trajectories cannot enter some small neighbourhood of the equilibrium in the middle of the set Q.

� One must check at the end that the found positively invariant annulus (closed ring shaped domain)
does not include equilibrium points (not at the boundary either!) It is often simpler to do after carrying

out estimates for Vf .

How to �nd an ! - limit set?

! - limit sets live naturally inside ! - invariant sets. In case one can �nd a very small ! - invarinat set

the position and the size of the ! - limit set inside it will be rather well de�ned.

Description properties of ! - limit sets is the main and the most complicated problem in the theory

of dynamical systems. Even numerical investigation of limit sets in dimension higher then 2 is rather

complicated and needs advanced mathematical tools.

In autonomous systems the plane R2 limit sets can be only of three types: a) equilibrium points,
b) periodic orbits, and c) closed curves consisting of �nite number of equilibrium points
connected by open orbits. It is an extension of the Poincare-Bendixson theorem.
The analytic identi�cation or at least e¤ective localization of ! - limit sets is possible with help of La

Salle�s invariance theorem. It states that ! - limit sets are subsets of zero level sets of Vf (x) = (rV � f) (x)
for appropriate Lyapunov functions V (x) satisfying Vf (x) � 0.
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This theorem helps in particular to �nd ! - limit sets that are asymptotically stable equilibrium points,

by a rather simple checking the behaviour of the velocity f(x) on the zero level set where Vf (x) = 0.

One can also investigate asymptotically stable equilibrium points with help of so called "strong" Lya-

punov functions that satisfy the strict inequality Vf (x) < 0 for x 6= 0.
It is di¢ cult in practice to �nd analytically ! - limit sets of two other types. It is possible if one can

�nd analytically a zero level set V �1f (0) that is a closed curve in plane. Then this level set belongs to one

of the two other types: periodic orbit or a chain of equilibrium points connected by open orbits.

Such an analytic construction is not known for the equation with periodic orbit in the second home

assignment, despite the fact that special techniques were developed to show that the periodic orbit there

is unique.

If a system has �rst integrals, then level sets of �rst integrals give a good tool to identify ! - limit sets

because these level sets consist of orbits and are very narrow invariant sets themself. The existence of �rst

integrals is usually a sign that energy of the system is preserved, that is a rather special situation.

The observations above show that in many practical situations we can �nd ! - limit sets that are

asymptotically stable equilibrium points.

For systems in plane we can with help of Poincare Bendixson theorem also show that in certain

situations ! - limit sets are periodic orbits but cannot give a formula for them and cannot state how many

they are.

! - limit sets in the plane that are more complicated then equilibrium points, is possible to describe

analytically in the case when for a Lyapunov function V (x) the zero level set V �1f (0) is a closed curve in

the plane and the corresponding equation can be investigated analytically.
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