1.1.1 An example from circuit theory

The study of electrical circuits is a source of many important differential equa-
tions. Consider, for example, the circuit shown in Figure 1.1 consisting of a
parallel connection of a capacitor (with capacitance C'), an inductor (with in-
ductance L), and a nonlinear resistor.

Let J = E. At any time ¢t € J, the >

current ig(t) through the resistor is ic u 'R
related to the voltage vp(t) across O == I I:g Nonlinear
. S - - ' resistor
the resistor by a nonlinear function
g, that is,
tr(t) = glvrl(t)). Figure 1.1

For example, if g is given by

g[{;} = _i + 'izz- "':"r':: (= H, {llj

then this corresponds to a particular component known as a twin-tunnel diode.
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The voltage v, across the inductor is related to the current 2, through the
inductor by Faraday's law

ve(t) = L% (t), L constant.

The voltage v across the capacitor and the corresponding current i satisfy

the relation
dve
Cﬁ{f} =1c(t), C constant.

Kirchoft’s current and voltage laws give
ip(t) +1p(t) +20(f) =0 YVie J
and
vp(t) =vr(t) =ve(t) Vie L

Eliminating the variables ¢, 1, v, and vy from the above relations, yields the
svstem of two differential equations

LSE@W) =volt).  OSE(t) = —u(t) - glue D).



Defining ,(t) := Lip(t) and x2(t) := ve(t), we obtain

a1 (t) = wa(t), £3(t) = —p121(t) — pag(za2(t)),
where pty 1= 1/(CL) and ps := 1/C. Setting

flz) = flz1,22) = (32-. —H121 —#29‘[32}}

for all z = (z1,22) € G := R? defines a function f: G — R* and, on writing
x(t) = (xy(t), x2(t)), the above pair of differential equations can be written as
the autonomous system &(t) = f(z()).

Now assume, for simplicity, that g, = gz = 1 and consider again the case
of a twin-tunnel diode described by the characteristic (1.1), in which case f is
given by

f(z)=flz1,22) = (EE s —Z1+ 22 —zg}.
Note that f(z) = 0 if, and only if, = = 0. Let A4 be the “annular” re-
gion in the plane, as in Figure 1.2, wherein the inner boundary is the cir-
cle of unit radius centred at (0,0) and the outer boundary is a polygon
with vertices as shown. A straightforward calculation reveals that there is
no point (z;,22) of either the inner or the outer boundary at which the vec-
tor f(z,z2) is directed to the exterior of the annulus (equivalently, at each
point z of each boundary, the vector f(z) is either tangential or directed in-
wards). An immediate consequence of this observation is the following fact: if
x: J — ( is a solution on the (that is, a continuously differentiable function

with #(t) = f(z(t)) for all £ € J) with z(0) € A, then z(t) € A for all ¢t = 0.



The set 4 is said to be positively in-
variant: solutions starting in the set
are trapped within the set in for-
wards time. We now know that the
sot A is positively invariant and is
such that f(z) # 0 for all 2 € A.
These two properties are sufficient to
ensure (via the Poincaré-Bendixson
theorem — to be stated and proved in
Section 4.6) that the system has at
least one periodic solution (that is, a
solution z: J — & with the property
that, for some T > 0, z(t) = x2(t+T)
for all ¢ € J), the orbit of which (that
is, the set {x(tf): t € R} = {=z(t): t €
[0,T)}) is contained in 4. The exis-
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Figure 1.2 Positively invariant set A4

tence of a periodic orbit is reflected in the terminology “nonlinear oscillator”
commonly used in the context of this circuit.



