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OBS!

Motivate all your solutions !
In Exercise 1, you do not need to compute the answers as base-10 numbers.

Exercises

1. A fair, normal dice (i.e.: six sides, numbered 1− 6) is tossed 10 times. (5x2.6p)

An ordered outcome refers to the full list of 10 numbers tossed.

An unordered outcome records only the number of times each value was tossed. Example:
If the ordered outcome was (1, 3, 2, 4, 4, 3, 2, 5, 6, 3), then the unordered outcome would
be (1, 2, 3, 2, 1, 1).

In part (a), “probability” refers to ordered outcomes.

(a) What is the probability of tossing exactly two 6’s ?

(b) Determine the number of ordered outcomes whose corresponding unordered outcome
is (3, 0, 3, 2, 2, 0).

(c) Determine the number of ordered outcomes in which every number is tossed either
0, 1 or 3 times.

(d) Determine the total number of possible unordered outcomes.

(e) Determine the number of ordered outcomes for which the sum of all 10 tosses is
exactly 52.

2. (a) Without using generating functions, solve the recursion (7p)

a0 = 1, a1 = 2, an = 5an−1 − 4an−2 + 1 ∀ n ≥ 2.

Obs! Zero points will be awarded for a solution employing generating functions, even
if fully correct otherwise.

(b) Let an denote the number of partitions of the set {1, 2, . . . , n} into disjoint subsets, (5p)
each of which contains either one or two elements. Prove that

an = an−1 + (n− 1)an−2 ∀ n ≥ 2.

Var god vänd!



3. (a) Let k ∈ N and A ⊆ N. Define the k-fold representation function of A and what it (2p)
means for A to be an asymptotic basis of order k.

(b) Prove that if A ⊆ N is an asymptotic basis of order 2, then the 2-fold representation (8p)
function of A cannot be ultimately constant.

4. (a) Describe Prim’s algorithm for finding a minimal spanning tree in a connected, weighted (2p)
graph.

(b) Prove that the algorithm always works. (8p)

5. (a) You are referred to the bipartite graph G1 in Figure 1. Starting with the single edge (5p)
{5, E}, apply the augmenting path procedure to determine a maximum size matching
in G1 in at most four steps. Write down the augmenting path and the new matching
chosen at each step. In the first two steps, augment so that the new matching has
no edges in common with the previous one (though it may share edges with older
matchings).

Determine also a subset of X = {1, 2, 3, 4, 5} of maximum deficiency.

(b) You are referred to the network G2 in Figure 2. Let G′

2 be the underlying graph, when
both the arrows and the weights are removed.

i. Determine a Hamilton cycle in G′

2. (1p)

ii. What is the minimum number of edges that need to be added to G′

2 in order to (2p)
obtain a graph (not a multigraph !) with an Euler path ? Add a suitable set of
such edges and write down an Euler path in the resulting graph.

iii. Write out the vertex-coloring of G′

2 obtained using the greedy algorithm and (2p)
ordering the vertices alphabetically. Call your colors 1, 2, 3, 4, . . . .

iv. Determine χ(G′

2) and an explicit optimal vertex-coloring. (2p)

v. Implement the Ford-Fulkerson algorithm to determine a maximum flow from s (5p)
to t in G2 and a corresponding minimum cut.
Obs! Start from the everywhere-zero-flow and write down which augmenting path
you choose and the increase in flow strength at each step, in table form. Then
draw the final flow in full.

6. Determine with proof, for every n ∈ N, the maximum possible number of edges in a (10p)
triangle-free n-vertex graph.

7. (a) Define rigorously the concept of a (bipartite) stable matching. (3p)

(b) Describe in full the Gale-Shapley algorithm and prove that it always produces a (8p)
(bipartite) stable matching.

(c) Furthermore, prove that G-S always produces a stable matching which is optimal for (6p)
each proposer.

8. Let m, n be positive integers with m ≤ n. A principal (m ×m)-submatrix of an (n × n)- (11p)
matrix A = (aij) is a submatrix consisting of all entries akl, where k, l ∈ S for some
m-element subset S of {1, 2, . . . , n}.

Now fix an m ∈ N. Prove that if n is sufficiently large, then for any (n×n)-matrix A each
of whose entries is either 0 or 1, there exists some principal (m × m)-submatrix B such
that

- all the elements below the main diagonal of B are the same, and

- all the elements above the main diagonal of B are the same (though maybe different from
those below the diagonal).

Lycka till!



Solutions: Diskret Matematik GU, 180824

1. (a) The total number of possibe ordered outcomes is 610. The number of ways of getting

exactly two sixes is
(

10
2

)

× 58. Hence, the probability of the latter event is
(10

2
)×58

610
.

(b)
(

10
3

)

×
(

7
3

)

×
(

4
2

)

= 10!
3! 3! 2! 2! .

(c) We have the following two possibilities:

Case 1: Three numbers appear three times each and one number appears once. The
number of ways this can happen is 10!

(3!)3
×
(

6
3

)

× 3.

Case 2: Two numbers appear three times each and four numbers appear once each.
The number of ways this can happen is 10!

3! 3! 4! ×
(

6
2

)

× 4!.
Finally, by AP, the total number of possibilities is

[

10!

(3!)3
×

(

6

3

)

× 3

]

+

[

10!

3! 3! 4!
×

(

6

2

)

× 4!

]

.

(d) An unordered outcome is a sextuple (x1, x2, x3, x4, x5, x6) such that 0 ≤ xi ≤ 6
and

∑6
i=1 xi = 10. First, if we ignored the restriction xi ≤ 6, then the number of

possibilities would be
(

10+6−1
6−1

)

=
(

15
5

)

. We must subtract those solutions where some
xi ≥ 7. Note that there can be at most one such i, and there are six choices for it. The
remaining five variables then sum to 3, 2, 1 or 0, which is equivalent to six variables
summing to exactly 3 (the sixth variable records 3 minus the sum of the others).
Hence, the number of solutions to be subtracted equals 6×

(

3+6−1
6−1

)

= 3×
(

8
3

)

.

Answer:
(

15
5

)

− 3×
(

8
3

)

.

(e) For i = 1, . . . , 10, let xi = 6 − (i:th toss). Then 0 ≤ xi ≤ 5 and
∑10

i=1 xi = 8. Thus
it’s the same type of exercise as part (d).

Answer:
(

17
8

)

− 10×
(

11
2

)

.

2. (a) The characteristic equation is x2 = 5x − 4, which has roots 1 and 4, so the general
solution of the corresponding homogeneous equation is

ah, n = C1 + C2 · 4
n.

Since 1 is already a solution of the homogeneous part, our guess for a particular
solution is an = C3 · n. Inserting into the recursion,

C3n = 5C3(n− 1)− 4C3(n− 2) + 1 ⇒ · · · ⇒ C3 = −
1

3
.

Hence, the solution to the recursion has the form

an = C1 + C2 · 4
n −

n

3
.

Insert the initial conditions:

n = 0 : a0 = 1 = C1 + C2,

n = 1 : a1 = 2 = C1 + 4C2 −
1

3
⇒ C1 + 4C2 =

7

3
.

Solving, we get C1 = 5/9, C2 = 4/9. Hence,

an =
1

9

(

5 + 4n+1 − 3n
)

.

(b) For a partition P of {1, 2, . . . , n}, where n ≥ 2, there are a priori two options:

Case 1: n is on its own in a one-element subset. Then it remains to partition the
remaining n − 1 elements under the same conditions as initially, so we have an−1

options.

Case 2: n is in a two-element subset. There are n− 1 options for n:s “partner”, and
then an−2 ways to partition the remaining n−2 elements. By MP, we have (n−1)an−2

options in Case 2.
Finally, apply AP.



3. (a) Definition 9.8 and Notation 9.11 in the lecture notes.

(b) Theorem 9.12 in the lecture notes.

4. (a) See notes for Lecture 17, pages 3-4.

(b) Theorem 18.1 in the lecture notes.

5. (a)

Step Augmenting path New matching

1 B  5 → E  1 {1, E}, {5, B}

2 2 B → 5 E → 1 C {1, C}, {2, B}, {5, E}

3 4 D {1, C}, {2, B}, {4, D}, {5, E}

The table shows a possible solution. An example of a subset of X with deficiency
1 is A = {2, 3, 5}, since N(A) = {B, E}. Since the table shows a matching of size
4 = 5− 1, this matching must be maximal, and A has maximum deficiency.

(b) i. An example of a Hamilton cycle is

s → a → b → d → e → g → f → h → i → t → j → c → s.

ii. There are six nodes of odd degree, namely s, a, c, e, h, t. If we join two pairs
that are not already joined, then we’ll get a graph with an Euler path and this
is the best we can do.
For example, add the edges {s, e} and {h, t}. In this new graph, only a and c
have odd degree, so there will be an Euler path between them. An example of
such a path is

a → s → b → a → f → d → b → e → d → g → f → h

→ i → t → h → g → t → j → g → e → j → c → e → s → e.

iii. The coloring will be

1 : a, c, d, h, t 2 : b, f, i, j 3 : e, s 4 : g.

iv. χ(G′

2) = 3. Clearly, at least three colors are needed since the graph has triangles.
An example of a 3-coloring is

1 : a, d, h, j 2 : e, f, s, t 3 : b, c, g, i.

v. One can find, for example, the following sequence of f -augmenting paths:

Step Augmenting path Increase in flow strength

1 s → a → f → h → i → t 2

2 s → a → f → g → t 2

3 s → b → e → g → t 2

4 s → b → d → g → t 2

5 s → c → e → j → t 3

6 s → c → j → g → t 1

7 s → c → j → g → h → i → t 1

The flow at this stage is illustrated in Figure L.2. Its strength is f(s, a)+f(s, b)+
f(s, c) = 4 + 4+ 5 = 13. The set of nodes which can be reached from s by an f -
augmenting path is S = {s, a}. Let T := V (G2)\S = {b, c, d, e, f, g, h, i, j, t}.
We have

c(S, T ) = c(a, f) + c(s, b) + c(s, c) = 4 + 4 + 5 = 13.

So we have found a maximum flow and a minimum cut.

6. Theorem E.10 in the lecture notes.



7. (a) See Dataset E.21 and Definition E.22 in the lecture notes.

(b) See Theorem E.23 in the lecture notes.

(c) Theorem E.26 in the lecture notes.

8. Identify the numbers 1, 2, 3, 4 with the ordered pairs (0, 0), (0, 1), (1, 0), (1, 1) respecti-
vely. Given an (n×n)-matrix A = (aij) of 0s and 1s, we can associate to it a 4-coloring of
the edges of Kn, whose vertices have been labelled from 1 through n, according to the rule:

Color the edge {i, j}, where i < j, with the color identified with the ordered pair (aij , aji).

Now fix m. By the generalized Ramsey theorem, if n is sufficiently large then, for any
A, the associated edge 4-coloring of Kn must induce a monochromatic Km-subgraph. Let
S ⊂ {1, . . . , n} be the labels on the vertices of this subgraph. Then, if you think about it for
a minute, the principal (m×m)-submatrix corresponding to S satisfies our requirements.


