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1 Solve the congruence x = 2(3), x = 3(5), x = 4(7)
Consider n = a×3×5+ b×3×7+ c×5×7. We need to solve thhe congruences

15a = 4(7), 21b = 3(5) and 35c = 2(3). Those are easily reduced to a = 4(7), b =
3(5) and −c = −1(3). Thus a = 4, b = 3, c = 1 solves it. hence we can choose
n = 60 + 63 + 35 = 158. We can subtract multiples of 3 × 5 × 7 = 105 hence 53 is
the smallest positive solution, and −52 the one closest to zero.

2 Compute the number ψ(210) You need to factorize 210 first

We find immediately that 210 = 2 × 3 × 5 × 7, hence

ψ(210) = (2 − 1)(3 − 1)(5 − 1)(7 − 1) = 48

3 Find all integers n such that ψ(n) = 4
We can write 4 as 4 or 2 × 2. In the first case we my look for either a primes p

such that p− 1 = 4 i.e. p = 5, or such that pn − pn−1 = 4. The latter forces p = 2
with the unique solution 23 = 8. We may also in the case of n = 5 throw in the
single factor of 2 getting n = 10. In the second case we may look at both p− 1 = 2
and pn − pn−1 = 2 with the unque solution 3 × 22 = 12. Thus 5, 8, 10 and 12.

4 Find the smallest integer n with exactly twelve divisors, including

1 and the number n itself.

If n =
∏

i
pni

i
the number of divisors is given by

∏
i
(ni + 1). It is clear that we

would like to factor 12 in as many factors as possible. The maximum number is
given by 3 × 2 × 2 which corresponds to p2

0
p1p2. The most economical way is to

chose 22 × 3 × 5 = 60 the Old Babylonian solution.

5 Show that if n > 4 then n! ends with a zero. How many zero does

100! end with? Would you be able to determine the first digit of 100!.
Finally give the smallest prime p which does not divide 100!. Can you

compute its residue modulo that prime? If n > 4 then n! contains the factors
2 and 5 and it becomes obvious. For the second we need to compute the maximal
power of 5 in 100! which surely will be matched by a corresponding power of 2.
There are 100/5 = 20 factors divisible by 5 and 100/25 = 4 factors divisible by 25
and none divisible by 125. Hence there are 20 + 4 factors of 5 corresponding to 24
zeroes.

If we make the trapetzoidal approximation of
∫

100

1
log x we will get

99∑
n

log n+
1

2
log 100 =

∫
100

1

log x = x log x− x|x=100

x=1
= 100 log 100 − 99 + ǫ

where ǫ is the error. We need to be able to compute the sum
∑

100

n=1
log n with

sufficient accuracy, in order to infer the first digit from its fractional part.
Now log x is concave and lies above its piecewise linear approximation. We

consider for each piece ψn(x) = log x−(log(n+1)− log n)x+n(log(n+1)− log n)−
1



2

log n and try to find the maximum. It is given by xn = 1/(log(n+ 1) − log n). We
easily compute log(n+1)−log n = log n(1+ 1

n
)−log n = log(1+ 1

n
) = 1

n
− 1

2n2 + 1

3n3 . . .
and hence we get

xn = n(1+(
1

2n
−

1

3n2
+

1

4n3
+. . . )+(

1

2n
−

1

3n2
+

1

4n3
+. . . )2+(

1

2n
−

1

3n2
+

1

4n3
+. . . )3+. . . )

which simplifies to

xn = n(1 +
1

2n
−

1

12n2
+

1

24n3
+ . . . )

Hence

log xn = log n+ (
1

2n
−

1

12n2
+

1

24n3
+ . . . )

−
1

2
(

1

2n
−

1

12n2
+

1

24n3
+ . . . )2

+
1

3
(

1

2n
−

1

12n2
+

1

24n3
+ . . . )3 + . . .

which simplifies to

log(xn) = logn+
1

2n
−

5

24n2
+

1

8n3
+ . . .

We now plug in the value of xn in ψn(x) and get

log n+
1

2n
−

5

24n2
+

1

8n3
+ · · · − 1 + n(

1

n
−

1

2n2
+

1

3n3
−

1

4n4
+ . . . ) − log n

which simplifies to
1

8n2
−

1

4n3
+ . . .

Summing this over all n gives us a bound on the total error, which is about twice as
large as the real. For small values of n the error is significant, so the best strategy
would be to compute say the first ten terms separately and then use the remaining
estimate which will be somewhat big. A better error estimate can be given, but it
involves some further work.

Now if we look at
∑

∞

n=N

1

n2 this is approximately
∫
∞

N

dt

t2
= − 1

n
|∞
n=N

= 1

N
. This

means that the error will be bounded by 1/80 if we start at N = 10. Instead of using
natural logarithms we will use base ten. This means that we multiply everything
with c = log

10
e = 0.434292 . . . .

Thus we look at

log 1 + log 2 + log 3 + · · · + log 9 + (log 10 + . . . log 100)

where the final tail can be approximated by

∫
100

10

log(t)dt = c(t ln(t) − t)|t=100

t=10
= 100 log(100) − 10 log(10) − c(100 − 10)

= 190 − c(90) = 190 − 39.086279 = 150.913721..
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. In fact we have that the integral is

1

2
log 10 + log 11 + log 12 + · · · + log 98 + log 99 +

1

2
log 100

up to an error which we estimate to c 1

8

1

10
= 0.05. Now we can compute

100∑
n=1

log(n) = (log 1 + log 2 + · · · + log 9)

+(
1

2
log 10 + log 11 + · · · + log 99 +

1

2
log 100) + (

1

2
log 10 +

1

2
log 100)

= 5.559763 + 150.913721 + 1.5

= 157.974484

The middle sum is overestimated by something that is on the order av 0.05 thus
we should expect that 100! starts with 8 or 9 as log(8) = 0.903090 and log(9) =
0.954243. In order to determine which we need to make a better error estimate.

In fact a brute force computation using numbers encoded in large arrays produces

9332621544394415268169923885626670049071596826438162146859296389521

7599993229915608941463976156518286253697920827223758251185210916864

000000000000000000000000

which indeed ends with the predicted 24 zeroes and which also contains 158 digits.

6 Write down the Farey sequence FN for N = 7
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