Exercises III

$29/3 \ 2012$

Due 16/4

1 Find all the solutions x modulo n such that $x^2 = 1(n)$ with n = 25 or n = 35

2 if p = 3(4) show that there is no integer *n* such that $x|n^2 + 1$

3 'Explain' why 101, 103, 107, 109 are all primes. Hint $3 \times 5 \times 7 = 105$

4 Determine the fraction that corresponds to *LRRLRR*.

5 Find the 'address' for $\frac{17}{29}$

6 Given x corresponding to a string S what fraction does S^* correspond to, where S^* is the string gotten from S by interchanging L for R and R for L

7 By the height of a fraction $\frac{m}{n}$ with $m, n \ge 0$ is meant the number m + n.

i) Give the list of all fractions with height 5

ii) Given a sequence S of length n give an upper and lower bound for its height in terms of n, and try to make them as sharp as possible.

8 Consider the Fermat numbers 3, 5, 17, 257, 65537.. is it true that all the remaining Fermat numbers end with 7?

9 Show that 641 divides $F_5 = 2^{2^5} + 1$ by using the facts that $641 = 2^4 + 5^4$ and $641 = 5 \times 2^7 + 1$

10 Show that any two distinct Fermat numbers F_n and F_m are relatively prime, and conclude that there exists infinitely many primes.

11 Show that the sum of the infinite series $\sum_{n>0} \frac{n}{3^n}$ is a rational number

12 Given $x \in (0,1)$ and let $0.b_1b_2...$ be its binary expansion. Replace each occurence of 0 with L and each occurence of 1 with R and consider the corresponding number $\phi(x)$. Show that ϕ is a strictly increasing function. Can you compute its derivative at different points x.

13 Show that RLRLRL... satisfies a quadratic equation. Hint: If x corresponds to S what does RLS correspond to?