
ANSWERS: CHAPTER 10

Section 10.1

1. At least 12× 4+ 1 = 49 students are needed, by the Extended Pigeonhole Principle.

2. There are 10 numbers divisible by both 2 and 3, and these have been removed twice.

In addition, the primes 2 and 3 themselves have been removed erroneously. Hence, the

conclusion should be that there are at most 22 primes (there are, in fact, 17 of them -

the argument has not yet considered sieving out multiples of 5 and 7).

3. The base case n = 2 states that, if A1 ∩ A2 = φ then |A1 ∪ A2| = |A1| + |A2|.
I will simply assert that this is obvious. Suppose the result holds for n sets and consider

n + 1 pairwise disjoint sets A1, A2, . . . , An+1. Let A1 := ∪n
i=1Ai and A2 := An+1.

Then A1∩A2 = φ so, by the base case, we have | ∪n+1
i=1 Ai| = |A1∪A2| = |A1|+ |A2|.

But by the induction hypothesis, |A1| = | ∪n
i=1 Ai| =

∑n
i=1

|Ai|. Putting these two

ingredients together yields the result for n+ 1 sets, v.s.v.

4. This is the statement that R(4, 3) ≤ 10. In class we will prove that R(3, 3) = 6,

i.e.: in any group of 6 people there must either be three mutual friends or three mutual

strangers. Now consider a set S of 10 people. Let p be any one of them. Let Sp be

the set of strangers to p. If any two members of Sp are mutual strangers, then these

two together with p from a group of three mutual strangers. Hence we may assume

that all members of Sp are mutual friends. Thus we are done if |Sp| ≥ 4, so we may

assume |Sp| ≤ 3 and hence that |Fp| ≥ 6, where Fp is the set of friends of p. Since

R(3, 3) = 6 it follows that, inside Fp we can find either three mutual friends or three

mutual strangers. In the latter case we are done. In the former case, these three friends

together with p form a group of 4 mutual friends. So we’re now totally done !

REMARK: The above argument must be totally symmetrical in the concepts “friend”

and “stranger”. Thus it is also true that, in a group of 10 people, we can always find

either 3 mutual friends or 4 mutual strangers. This observation will be used in the

solution to Ex. 10.7.19 below.

Section 10.2

1. Consider the set S of ordered pairs (b, g) such that b is a boy and g is a girl who know

each other. We are told that, for each b there exist five g:s. Hence |S| = 32× 5 = 160.

We are also told that each girl knows 8 boys, hence 160 = 8G where G is the number

of girls. Thus, G = 20.

1



2 ANSWERS: CHAPTER 10

2. Let there be k sets. Consider the collection of ordered pairs (s, e), where s is one

of the sets and e ∈ s. Since each set has four elements, the number of pairs is 4k. But

since each element of N8 belongs to three sets, the number of pairs is also 8× 3 = 24.

Thus k = 6. An example is

{1, 2, 3, 4}, {1, 3, 5, 7}, {1, 4, 6, 8}, {2, 4, 6, 7}, {2, 5, 7, 8}, {3, 5, 6, 8}.

3. No. Suppose there are k such sets and again consider the collection of ordered pairs

(s, e), where s is one of the sets and e ∈ s. Arguing as in Ex. 2, the number of pairs

equals both 3k and 5× 8 = 40. This gives k = 40

3
, which is impossible since k must be

an integer.

4. Similar to Ex. 10.1.3.

5. By the multiplication principle, there are 264 possible words in all, and 254 pos-

sible words if we can’t use b.

Section 10.3

1. 19 is prime so φ(19) = 18. φ(20) = φ(22 · 5) = 20 · (1 − 1

2
)(1 − 4

5
) = 8. Finally,

φ(21) = φ(3 · 7) = 21 · (1− 1

3
)(1− 1

7
) = 12.

2. The underlying relevant fact here is that, if d|a and d|b, then d|(a ± b). Suppose

n− x and n have a common factor d. Then d|n− (n− x), i.e.: d|x, so d is also a com-

mon factor of x and n. And vice versa by a similar argument. Thus GCD(x, n) = 1 if

and only if GCD(n− x, n) = 1.

Now let n ≥ 3. If n is odd then n/2 is not an integer, whereas if n is even then n/2
is an integer greater than one, thus GCD(n/2, n) = n/2 > 1 in this case. It follows

that the numbers between 1 and n which are relatively prime to n can, by the previous

paragraph, be grouped into disjoint pairs {x, n − x}. In particular, there are an even

number of such numbers, v.s.v.

3. The numbers between 1 and pm which have a common factor with pm are precisely

those which are multiples of p, since p is prime. There are pm/p = pm−1 such multiples

of p. Thus φ(pm) = pm − pm−1, v.s.v.

4. For example, take a = 4, b = 6. We have φ(4) = φ(6) = 2 so φ(4)φ(6) = 4.

But φ(24) = φ(23 · 3) = 24 · (1− 1

2
)(1− 1

3
) = 8.

The conjecture holds if and only if GCD(a, b) = 1, in all other cases φ(ab) >
φ(a)φ(b). Indeed this follows immediately from formula (3.3) in the lecture notes. One

can also deduce it from the so-called Chinese Remainder Theorem (see wiki if you’re

interested).
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Section 10.4

1. 43 = 64 by the multiplication principle. Note by the way that in any “sensible” flag,

the same colour won’t be used on two adjacent strips. If we discount those, then there

are only 36 possible flags since: (i) there are 4 flags with the same colour on all three

strips (ii) there are 4× 3× 2 = 24 flags with the same colour on two adjacent strips and

a different colour on the third strip - 4 possibilities for the first colour, 3 for the second

colour and 2 for the stripe to hold the second colour (it can’t be the middle stripe).

2. For example,

φ ↔ 0000,

{d} ↔ 0001, {c} ↔ 0010, {b} ↔ 0100, {a} ↔ 1000,

{c, d} ↔ 0011, {b, d} ↔ 0101, {a, d} ↔ 1001,

{b, c} ↔ 0110, {a, c} ↔ 1010, {a, b} ↔ 1100,

{b, c, d} ↔ 0111, {a, c, d} ↔ 1011, {a, b, d} ↔ 1101, {a, b, c} ↔ 1110,

{a, b, c, d} ↔ 1111.

3. We seek the smallest integer k such that 8k > 106. The smallest power of 2 that is

greater than 106 is 10242 = (210)2 = 220 = 820/3. Thus k = 7.

4. There are 28 subsets of a set with eight elements and then 22
8

subsets of this set.

So we need to check that 22
8

= 2256 > 1076. But 1024 = 210 > 103, so 2 > 100.3 and

thus 2256 > 10256×0.3 = 1076.8 > 1076, v.s.v.

Section 10.5

1. The order matters, so P (14, 11) = 14!

3!
.

2. P (10, 4) = 10× 9× 8× 7 = 5040.

3. There are P (6, 3) = 6 × 5 × 4 = 120 such selections. I’d list them in alpha-

betical order.

4. The right-hand side is the number of ways to choose r distinct objects from n, when

the order matters. Since the order matters, each choice of r objects can be broken down

into a pair of choices: first, an ordered choice of m objects; second, an ordered choice

of r − m from the remaining n − m objects. There are P (n, m) possibilities for the

first choice and P (n−m, r −m) for the second, hence P (n, m)× P (n−m, r −m)
for the pair of choices, by the multiplication principle.
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Review Section 10.7

1. The order matters since these are three different jobs. Thus P (9, 3) = 9 × 8 × 7 =
504.

2. Because you can turn the domino 180 degrees, i.e.: [x | y] is the same domino as

[y | x]. There are thus only (7× 6)/2 = 21 different dominoes where x 6= y. There are

7 where x = y. Thus 28 in all.

3. There are 32 choices for the black square. This rules out 8 white squares (4 on

the same rank and 4 on the same file), leaving 24 choices for the latter. The order mat-

ters, so there are 32× 24 = 768 choices for the pair of squares.

4. 8!, since one must place one rook on each rank and then each placement corre-

sponds to a permutation of the files (or vice versa).

5. There are m + n positions in the line and the “leftmost” girl can stand in any of

positions 1 through m+ 1. The n girls can then be lined up in n! ways, and the boys in

m! ways. By MP, the total number of possible arrangements is (m + 1) × n! × m! =
n!× (m+ 1)!.

6. Similar reasoning to Exs. 10.2.2 and 10.2.3. In the first part, r = 6. In the sec-

ond part, we’d be led to r = 9×7

12
= 21

4
6∈ Z, so this is impossible.

7. There are 105 five-digit telephone numbers in all. There are P (10, 5) = 10 × 9 ×
8× 7× 6 = 30240 without any repeated digits. Hence, there are 105 − 30240 = 69760
numbers with some digit repeated.

10. The rooms can be denoted 1, 2, 3, 4 such that 1, 2, 3 are all connected together,

plus that 3 is connected to 4. Rooms 1, 2, 3 must get three different colours so there are

P (n, 3) = n(n− 1)(n− 2) ways to colour these three. Then room 4 can get any colour

other than that given to room 3, so there are n − 1 choices for that room. By MP, the

total number of possible colourings is n(n− 1)2(n− 2).

11. |Xi| = 2|Xi−1|. Thinking fuzzily, 103 ≈ 210 so 10100 ≈ 2333. We have |X2| =
22 = 4, |X3| = 24 = 16, |X4| = 216 > 333, so |X5| > 10100. The answer is i = 5.

12. The correspondence [x | y] ↔ [n − x |n − y] gives a 1-1 correspondence between

dominos with sum x+y = n−k and those with sum (n−x)+(n−y) = 2n−(x+y) =
2n− (n− k) = n+ k, v.s.v.

14. Follows immediately from formula (3.3) in the lecture notes, since the primes di-

viding nm are, for any m, precisely those dividing n itself.

15. φ(1000) = φ(23 · 53) = 1000 · (1− 1

2
)(1− 1

5
) = 400.
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φ(1001) = φ(7 · 11 · 13) = 1001× 6

7
× 10

11
× 12

13
= 6× 10× 12 = 720.

17. Clearly u1 = 2 since there are two possible words, namely 0 and 1. Similarly,

u2 = 3 since the possibilities are 01, 10 and 11. Now let n ≥ 3 and consider an

admissable word of length n.

CASE 1: The first digit is 0. Then the second digit must be 1. We can choose the

remaining n− 2 digits freely, except that we have the same restriction as at the outset -

thus there are un−2 posssible words.

CASE 2: The first digit is 1. This time we can choose the remaining n − 1 digits

freely, but for having the same restriction as at the outset - thus there are un−1 possible

words.

By the addition principle, there are un−2 + un−1 possible words of length n, i.e.:

un = un−2 + un−1, v.s.v.

19. Let p be any person. There are 19 others so, by the Pigeonhole Principle, either

p has at least 10 friends or at least 10 strangers.

CASE 1: p has at least 10 strangers. By Ex. 10.1.4, amongst p’s strangers we can

find either 4 mutual friends or 3 mutual strangers. In the former case we are done. In

the latter case, any such 3 mutual strangers together with p form a group of 4 mutual

strangers, and we are done again.

CASE 2: p has at least 10 friends. By the remark following our solution to Ex. 10.1.4,

amongst p’s friends we can find either 3 mutual friends or 4 mutual strangers. In the

latter case we are done. In the former case, any such 3 mutual friends together with p
form a group of 4 mutual friends, and we are done again.


