
ANSWERS: CHAPTER 15

Section 15.1 (Graphs and their representations)

1. For the picture, see Figure 15.1.1. It is not possible to draw the graph in such a way

that edges don’t cross, in other words K3, 3 is not planar. See the discussion in the lecture

notes on Kuratowski’s theorem. The adjaceny list and matrix are given below. In the

latter, the rows/columns are indexed left-to-right/top-to-bottom as A, B, C, G, W, E.

A B C G W E

G G G A A A

W W W B B C

E E E C C C















0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0















.

2. For the drawing, see Figure 15.1.2. A suitable path is 0 → 1 → 2 → · · · → n → 0.

3. It has
(

n

2

)

edges and is planar iff n ≤ 4, see the lecture notes.

4. For example, take G = (V, E), where V = {1, 2, 3, 4, 5} and

E = {{1, 2}, {1, 4}, {2, 3}, {2, 5}, {3, 4}, {4, 5}}. See Figure 15.1.4.

Section 15.2 (Isomorphism of graphs)

1. For example, the second graph has no 3-cycles.

2. An example of an isomorphism is the mapping

a 7→ 0, b 7→ 7, c 7→ 9, d 7→ 6, e 7→ 1, f 7→ 5, g 7→ 3, h 7→ 8, i 7→ 4, j 7→ 2.

To see this, first draw the two graphs as in Figure 15.2.2, and then use Exercise 15.8.3.

3. See Figure 15.2.3.
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Section 15.3 (Degree)

1. (i) Not possible, since the sum of the degrees must be even.

(ii) Possible. See Figure 15.3.1(ii).

(iii) Not possible. Such a graph would have 5 vertices and three of them would be con-

nected to every other vertex. This would imply that every vertex had degree at least 3.

(iv) Not possible. If G has n vertices, then no degree can exceed n− 1.

2. n− 1− d1, n− 1− d2, . . . , n− 1− dn.

3. G ∼= H iff G ∼= H . If G has seven vertices, each of degree 4, then G has seven

vertices, each of degree 2. Hence, every component of G is a cycle, which leaves two

possibilities: (i) G is a 7-cycle (ii) G has two components, a 3-cycle and a 4-cycle.

So there are two non-isomorphic graphs on seven vertices that are regular of degree

4. They are illustrated in Figure 15.3.3.

5. Each degree is one of the integers 0, 1, . . . , n− 1 and there are n vertices.

Case 1: G has no isolated vertex, i.e.: no vertex of degree 0. Then there are only n−1
possibilities for the degree of any vertex, and there are n vertices, so by the Pigeonhole

Principle there must be two vertices with the same degree.

Case 2: G has at least two isolated vertices. Then these all have the same degree,

namely 0.

Case 3: G has exactly one isolated vertex. This leaves n − 1 vertices and each has

degree at least 1. But each has degree at most n − 2, since none of them connects to

the isolated vertex. Hence there are only n− 2 possibilities for the degrees of the non-

isolated vertices and n − 1 such vertices, so PP implies again that two must have the

same degree.

Section 15.4 (Paths and cycles)

1. There are three components, {a, f, i, j}, {b, c, e, g} and {d, h}. See Figure 15.4.1.

2. (i) There are a total of five married couples, hence 10 guests, at the party. The

nine answers gotten by the Professor must have been 0, 1, . . . , 8. We identify these

numbers with the corresponding people. Nr. 8 must have shaken the hand of everyone

except his/her own spouse (and him/her self). In particular, everyone other than his/her

spouse must have shaken at least one hand. Hence Nr. 8 must be married to Nr. 0. Next

consider Nr. 7. There are two people whose hands (s)he didn’t shake, and these two

must be Nr. 0 and his/her own spouse. In particular, everyone other than Nr. 0 and Nr.

7’s spouse must have shaken the hand of both Nrs. 7 and 8, which implies that Nr. 7
must be married to Nr. 1.

One can continue in the same way (details left to reader to write out) to conclude that

Nr. 6 is married to Nr. 2 and Nr. 5 to Nr. 3, which leaves Nr. 4 as the spouse of the

Professor. Hence, April shook 4 hands.
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(ii) The graph must have two components, since Nr. 0 is an isolated vertex whereas

Nr. 8 is joined to everyone else.

3. For example,

(0, 0, 0) → (1, 0, 0) → (1, 1, 0) → (0, 1, 0) → (0, 1, 1) →

→ (1, 1, 1) → (1, 0, 1) → (0, 0, 1) → (0, 0, 0).

4. There is no solution for Dr. X since the graph has no Hamiltonian cycle. It does have

a Hamiltonian path, for example 8 → 7 → 6 → 5 → 0 → 1 → 2 → 3 → 4, but then

there’s no edge from 4 back to 8. Basically, vertex 4 is the bottleneck.

There is a solution for Dr. Y. We can see immediately from the adjacency list that

there are exactly two vertices of odd degree, namely 2 and 6, so there exists an Eulerian

walk between these two.

5. It is impossible. The 33 = 27 small cubes making up the big cube can be repre-

sented by a graph G = (V, E), where V consists of all points (a1, a2, a3) ∈ Z
3 such

that ai ∈ {0, 1, 2}, and where an edge is placed between two points if and only if they

are adjacent in the lattice, i.e.: iff they differ by exactly one in exactly one coordinate.

This graph is bipartite since V = Ve ⊔ Vo, where Ve (resp. Vo) consists of the points for

which a1 + a2 + a3 is even (resp. odd), and every edge goes between a vertex in Ve and

one in Vo. There are 14 vertices in Ve and 13 in Vo. This implies that any Hamiltonian

path in G must start and end in Ve, since the path goes back and forth between Ve and

Vo. But the middle of the cube is represented by (1, 1, 1), a point in Vo. Hence the

mouse cannot end there, no matter where he starts from.

Section 15.5 (Trees)

1. See Figure 15.5.1. Note that a methodical way to approach this problem is to start

from a vertex of maximum degree, which can be 5, 4, 3 or 2.

2. Let |V | = n. Then |E| = n − 1. Let the degrees of the vertices be d1, d2, . . . , dn.

We have
∑n

i=1 di = 2|E| = 2n − 2. But each di ≥ 1, since T is connected. Hence, at

least two of the di must equal one, as otherwise the degree sum would be at least 2n−1.

3. (1) ⇒ (2): Well, (2) says that, for any pair x, y of vertices, there is some path

between them in G. (1) says this and more, namely that for each pair x, y, such a path

is unique.

(1) ⇒ (3): Suppose (3) did not hold. Let C be any cycle in G and imagine the vertices

along it being drawn in a circle. Let x, y be any pair of vertices along the cycle. Then

there are at least two distinct paths between x and y, namely we can go either clockwise

or anti-clockwise along the cycle C. This contradicts (1).
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4. Let the components be Fi = (Vi, Ei), i = 1, . . . , c. Each Fi is a tree, hence

|Ei| = |Vi| − 1. But |E| =
∑

i |Ei| =
∑

i(|Vi| − 1) = (
∑

i |Vi|)− c = |V | − c, v.s.v.

Section 15.6 (Coloring the vertices of a graph)

1. χ(Kn) = n, χ(C2r) = 2 and χ(C2r+1) = 3.

2. (i) χ(G) = 3. A 3-coloring is illustrated in Figure 15.6.2(i). We must prove it is

impossible to color with only two colors. If one tries to do so, then because of the outer

8-cycle, the colors would need to alternate along this cycle. But then opposite vertices

would get the same color - contradiction, since opposite vertices are joined in G.

(ii) χ(G) = 4. A 4-coloring is illustrated in Figure 15.6.2(ii). We must prove it is

impossible to color with 3 colors. Suppose one tried to so, with colors a, b, c. The

outer 5-cycle must use all 3 colors and, up to rotations and permutations of the colors,

the only possibility is, reading clockwise from the top vertex, a, b, a, b, c. One checks

that there will then be three arms of the inner 5-star whose ends have respectively the

pairs of colors {a, b}, {a, c}, {b, c}. The inner vertices along these arms must therefore

get the colors c, b, a respectively. But then the innermost vertex must get a fourth color.

(iii) χ(G) = 4. A 4-coloring is illustrated in Figure 15.6.2(iii). We must prove it is

impossible to color with 3 colors. Say we try with colors a, b, c. The top two vertices

along with that on the right form a K3, hence these must get three different colors.

WLOG, assign these three vertices the colors a, b, c, reading clockwise. Continuing

clockwise, the two bottom vertices must get colors a, b, since these are both joined to

the vertex on the right, as well as vertically upwards. But then the leftmost vertex is

already joined to three vertices who’ve received colors a, b, c, so it must get a fourth

color.

3. χ(G) = 1 iff G is a collection of isolated vertices, i.e.: iff G has no edges at all.

Section 15.7 (The greedy algorithm for vertex coloring)

1. Consider the following three orderings:

O1 = {(1, 0, 0), (0, 0, 0), (0, 1, 0), (1, 1, 0), (1, 1, 1), (0, 1, 1), (0, 0, 1), (1, 0, 1)},

O2 = {(1, 0, 0), (0, 1, 1), (1, 1, 1), (1, 0, 1), (0, 0, 1), (0, 0, 0), (1, 1, 0), (0, 1, 0)},

O3 = {(1, 0, 0), (0, 1, 1), (1, 1, 1), (1, 0, 1), (0, 0, 0), (0, 0, 1), (1, 1, 0), (0, 1, 0)}.
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If we color greedily with colors a, b, c, d then, in these three orderings, the colors

assigned will be

For O1: a, b, a, b, a, b, a, b,

For O2: a, a, b, c, b, c, c, b,

For O3: a, a, b, c, b, d, c, d.

2. There exists, by defintion, some coloring of G using exactly χ(G) colors. Consider

any such coloring C, using colors i = 1, 2, . . . , χ(G), say. Now order the vertices of G

in such a way that the vertices assigned color j all come before those assigned color k,

whenever j < k. Vertices assigned the same color can be ordered amongst themselves

arbitrarily. Then the greedy algorithm will produce exactly the coloring C.

3. Fix an i such that ei(G) ≤ i + 1. Consider any ordering of V (G) such that all

the vertices of degree i + 1 or more come first. Now color according to the greedy

algorithm. A priori, at most i + 1 colors are used among the first i + 1 vertices in the

ordering, i.e.: among the vertices of degree at least i + 1. Every subsequent vertex

has degree at most i, which implies that at most i colors will have been used up by the

vertices to which it’s joined. This means that the greedy algorithm will always choose

one of the first i+ 1 available colors.

4. (i) If we denote the vertices, in clockwise order along the cycle, as 1, 2, . . . , 2r
then, when r is odd, every edge in Mr goes between a pair of vertices of opposite par-

ity, so Mr is bipartite.

(ii) If r is even and r ≥ 2, we can 3-color Mr by alternating with colors a and b on

vertices 1, 2, . . . , r, switching to c for vertex r + 1, then back to alternating a, b as far

as vertex 2r − 1, and finally using c again on vertex 2r.

On the other hand, if we try to 2-color, then we must alternate with a and b on vertices

1, 2, . . . , r and then we’ll be forced to use a third color on vertex r + 1.

(iii) If r = 2 then Mr = K4, and χ(K4) = 4.

Review Section 15.8

1. Every vertex in Kn has degree n− 1, so there exists an Eulerian cycle if and only if

n is odd. If n = 2, there exists an Eulerian walk which is not a cycle.

2. If m = 1 and |V | = 2, then obviously |E| ≤ 1 = m2. Suppose the theorem is true

for graphs on 2m vertices and let G be a graph on 2m+2 vertices. If G has no edges at

all, then obviously |E| ≤ (m+ 1)2. So pick any edge {v1, v2}. Let G′ be the subgraph

spanned by the remaining 2m vertices. If G has no 3-cycles then neither has G′ so, by

the induction hypothesis, G′ has at most m2 edges. Every other edge in G is either the

edge {v1, v2}, or goes between one of these two vertices and a vertex in G′. But v1 and

v2 can have no common neighbor in G′, as otherwise we’d get a 3-cycle. Hence, the
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total number of edges in G is at most 1+|V (G′)|+m2 = 1+2m+m2 = (m+1)2, v.s.v.

3. See Figure 15.8.3.

4. If G is bipartite, any path must cross back and forth between the two parts. If G

has an odd number of vertices, then a Hamiltonian cycle contains an odd number of

edges. But, in a bipartite graph, after an odd number of crossings we will be on the

opposite side from where we started, so we can’t have completed a cycle.

5. (i) Each vertex has k coordinates which can be switched to get an adjacent ver-

tex. (ii) Every edge is between a vertex in Ve and one in Vo, where Ve (resp. Vo) is the

set of vertices with an even (resp. odd) number of ones.

6. We proceed by induction on k. If k = 2, then Qk
∼= C4, so is is a cycle. Sup-

pose Qk has a Hamiltonian cycle Ck, WLOG starting and ending at 0k = (0, 0, . . . , 0).
Denote by Pk the corresponding Hamiltonian path, i.e.: leave out the last edge in Ck
which returns to 0k. In Qk+1, we get a Hamiltonian cycle starting and ending at 0k+1 as

follows:

Step 1: Fix the first coordinate to be 0 and adjust the remaining k coordinates as if

one were following the Hamiltonian path Pk. Continue to the end of the path.

Step 2: Now switch the first coordinate to 1.

Step 3: Now adjust the remaining coordinates so that you follow the path Pk back to

0k.

Step 4: Switch the first coordinate back to 0.

It is clear, I hope, that this describes a Hamiltonian cycle in Qk+1.

7. This can be verified by exhaustive search. Note that the graph does possess sim-

ple cycles of length 5, 6, 7 and 9.

8. This is just another way of saying that K7 possesses an Eulerian walk, in fact it

possesses an Eulerian cycle since every vertex has even degree, namely 6.

11. Suppose χ(G) < n
n−k

. Then there would be a vertex coloring of G using strictly

less than n
n−k

colors. In such a coloring, at least one color would have to be used on

strictly more than n − k vertices, hence on at least n − k + 1 vertices. These must

form an independent set, call it S. Every neighbor of every vertex in S must be in the

complement V (G)\S. But there are only k − 1 other vertices in G, hence every vertex

in S has degree at most k − 1. This contradicts the assumed k-regularity of G.

12. See Figure 15.8.12, which includes an explanation of why the five graphs are pair-

wise non-isomorphic.

13.

14. Yes, though I don’t know of any simple, elegant way to prove it (i.e.: a way which

avoids some form of brute-force search). If you’re interested, see
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https://en.wikipedia.org/wiki/Knight’s tour

15. (i) See Exercise 15.8.3.

(ii) We first prove that χ(Ok) > 2 by exhibiting an odd cycle in the graph. Let the

underlying (2k − 1)-set be {1, 2, . . . , 2k − 1} and consider the following 2k vertices

in Ok:

v1 = {1, 2, . . . , k − 1}, v2 = {k + 1, k + 2, . . . , 2k − 1},

v3 = {2, 3, . . . , k}, v4 = {k + 2, k + 3, . . . , 2k − 1, 1},

v5 = {3, 4, . . . , k + 1}, v6 = {k + 3, k + 4, . . . , 2k − 1, 1, 2},

. . . . . . . . . . . .

. . . . . . . . . . . .

v2k−1 = {k, k + 1, . . . , 2k − 2}, v2k = v1 = {1, 2, . . . , 2k − 1}.

It’s easy to see that each consecutive pair of (k − 1)-sets is disjoint, hence

v1 → v2 → · · · → v2k−1 → v1 is a (2k − 1)-cycle in Ok.

To prove that χ(Ok) = 3 it thus suffices to prove that

V (Ok) = V1 ⊔ V2 ⊔ V3,

where each Vi is an independent set, i.e.: an intersecting collection of (k − 1)-subsets

of {1, 2, . . . , 2k − 1}. We let

V1 = {X ⊂ {1, 2, . . . , 2k − 1} : |X| = k − 1 and 1 ∈ X},

V2 = {X ⊂ {1, 2, . . . , 2k − 1} : |X| = k − 1 and 2 ∈ X},

V3 = {X ⊂ {1, 2, . . . , 2k − 1} : |X| = k − 1 and X ⊆ {3, 4, . . . , 2k − 1}}.

It is obvious that V1 and V2 are intersecting families of sets. The same is true of V3

since, if X,X ′ belong to V3 then both are (k − 1)-element subsets of a (2k − 3)-set so

|X ∩X ′| = |X|+ |X ′| − |X ∪X ′| ≥ (k − 1) + (k − 1)− (2k − 3) ≥ 1.

16. The lower bound is achieved by a forest, see Exercise 15.5.4. For the upper bound,

let n1, n2, . . . , nc be the numbers of vertices in the various components. Then

ni ≥ 1 ∀ i,
c
∑

i=1

ni = n, m ≤
c
∑

i=1

(

ni

2

)

=
1

2

c
∑

i=1

(n2
i − ni) =

1

2

(

c
∑

i=1

n2
i − n

)

.

Hence m is maximised by maximising
∑c

i=1 n
2
i , subject to the first two constaints. It

is a simple calculus exercise (e.g.: using Lagrange multipliers) that the maximum is

attained when n1 = n− c+ 1, ni = 1 ∀ i > 1. Hence,

m ≤
1

2

(

(n− c+ 1)2 + (c− 1) · 12 − n
)

= · · · =
1

2
(n− c)(n− c+ 1).

The maximum is attained when G is the union of a Kn−c+1 and c− 1 isolated vertices.

17. The sum on the left counts all ordered pairs (x, y) such that {x, y} ∈ E(G) and

x ∈ {v1, v2, . . . , vk}. Any pair for which also y ∈ {v1, v2, . . . , vk} will be counted

twice and there are at most
(

k

2

)

= k(k−1)
2

such pairs. This accounts for the first term

on the right. Any pair for which y is not among the first k vertices will be counted
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once. The number of such pairs is at most
∑n

i=k+1min{k, di} since each y = vj has

no more than dj neighbors in total, and a priori no more than k of them can be among

v1, v2, . . . , vk. This accounts for the second term on the right.

18. (i) First suppose g = 2m + 1. Let v0 be any vertex and set N0 := {v0}. Let

N1 be the set of its neighbors. Since G is k-regular, |N1| = v. Let N2 be the set of all

neighbors of all vertices in N1, other than v0. Note that if any two vertices in N1 were

neighbors, then G would have a 3-cycle, formed by these two and v0. Similarly, if any

two vertices in N1 had a common neighbor in N2, then G would have a 4-cycle, formed

by the two vertices in N1, their common neighbor in N2 and v0. Hence, if g ≥ 5, then

|N2| = (k − 1) · |N1|.
Continue in the same manner: for i = 1, . . . , m, define Ni+1 to be the set of all

neighbors of vertices in Ni other than those already in Ni−1. Then, since G has no

cycles of length 2m or less, one has |Ni+1| = (k − 1) · |Ni| for every i = 1, . . . , m
and hence |Nr| = (k − 1)r−1|N1| = k(k − 1)r−1, for r = 1, . . . , m. The sets Ni are

pairwise disjoint by definition, thus

|V (G)| ≥
m
∑

r=0

|Nr| = 1 + k + k(k − 1) + · · ·+ k(k − 1)m−1, v.s.v.

(ii) Suppose g = 2m. Let {v0, w0} be any edge in G. Let Nm−1(v0) denote the set

of all vertices, other than w0, which are at distance at most m − 1 from v0. Similarly,

define Nm−1(w0) to be the (m−1)-neighborhood of w0, other than v0. If these two sets

had a vertex in common, say x, then G would contain a cycle of length at most 2m− 1,

namely take a shortest path from v0 to x, then a shortest path back to w0 and finally the

edge back to v0.

Hence, the sets Nm−1(v0) and Nm−1(w0) must be disjoint, so in order to prove the

result we’re after it suffices to show that each of them contains at least 1 + (k − 1) +
· · · + (k − 1)m−1 vertices. But this is done in a similar manner to (i). Namely, by an

argument similar to that given in (i) one easily shows that, in Nm−1(v0) say, there are

at least (k − 1)r vertices at distance exactly r from v0, for r = 0, 1, . . . , m − 1. The

reason for (k − 1)r instead of k(k − 1)r−1 is because this time we’ve removed w0 from

the 1-neighborhood, so the analog of the set N1 contains only k − 1 vertices this time.

19. Following the argument in Exercise 18 leads us to what the extremal graphs must

look like. See Figures 15.8.19 for examples when g = 3, 4, 5, 6 and an explanation of

why it’s not possible to make things work when g = 7.

21. See Dirac’s theorem in the lecture notes.


