EXERCISES: CHAPTER 16

Section 16.3 (Spanning trees and the MST problem)

1. Find spanning trees for the cube graph and for Petersen's graph.

2. Sketch all the 16 spanning trees for K_4 .

3. Use the greedy algorithm to find a minimum spanning tree for the weighted graph in Figure 16.3.3. Is the minimum spanning tree unique in this case ?

4. Let G be the weighted graph whose vertex set is $\{x, a, b, c, d, e, f\}$ and whose edges and weights are given by the table

xa	xb	xc	xd	xe	xf	ab	bc	cd	de	ef	fa
6	3	2	4	3	7	6	2	3	1	8	6

Find all minimum spanning trees for G.

5. Suppose that T is a minimum spanning tree in a weighted graph K and e^* is an edge of K not in T. Let e be any edge of T belonging to the unique path in T which joins the vertices of e^* . Show that $w(e) \le w(e^*)$.

Section 16.6 (The shortest path problem)

1. Use Dijkstra's algorithm to find the shortest path from v to w in the weighted graph depicted in Figure 16.6.1.

2. Find the shortest route from A to F in the weighted graph specified in the following table:

	A	B	C	D	E	F
A		5	8	3	4	9
B		—	6	1	5	4
C			—	3	9	2
D				_	4	6
E						3

EXERCISES: CHAPTER 16

Review Section 16.7

6. Find all minimum spanning trees for the weighted graph depicted in Figure 16.7.6.

8. In the weighted graph of Exercise 16.3.3, find the shortest path from a to k.

9. Kruskal's version of the greedy algorithm is: choose the edges in order of increasing weight, randomly in the case of ties, but rejecting those whose inclusion would create a cycle. Show by example that in Kruskal's method the set of edges constructed at an intermediate stage need not form a connected graph.

10. Prove that Kruskal's method always produces a MST.

17. Let the vertices of the complete graph K_n be denoted by $1, 2, \ldots, n$, and for each spanning tree T of K_n define the *Prüfer symbol* $(p_1, p_2, \ldots, p_{n-2})$ as follows: The Prüfer symbol of a tree with two vertices is null. If n > 2, the Prüfer symbol of a tree with n vertices is $(j, q_1, \ldots, q_{n-3})$ where

(i) j is the unique vertex of T adjacent to the vertex i of degree one which comes first in numerical order,

(ii) (q_1, \ldots, q_{n-3}) is the Prüfer symbol of the tree obtained by deleting the edge $\{i, j\}$ from T.

Show that the Prüfer symbol construction defines a bijection from the set of spanning trees of K_n to the set of ordered (n-2)-tuples from the set $\{1, 2, \ldots, n\}$ and deduce that K_n has n^{n-2} spanning trees.