EXERCISES: CHAPTER 17

Section 17.1 (Relations and bipartite graphs)

1. Let $X = \{2, 3, 5, 7, 11\}$, $Y = \{99, 100, 101, 102, 103\}$, and define x and y to be related whenever x is a divisor of y. Draw the bipartite graph representing this relation and verify that

$$\sum_{x\in X} \deg(x) = \sum_{y\in Y} \deg(y) = |E|.$$

2. Let $K_{r,s} = (X, Y, E)$, the complete bipartite graph with |X| = r and |Y| = s.

(i) What is the degree of each vertex in X?

(ii) What is the degree of each vertex in Y?

(iii) How many edges are there in $K_{r,s}$?

(iv) Describe in ordinary language a relation which $K_{r,s}$ could represent.

(v) Show that, for any $s \ge 1$, $K_{1,s}$ is a tree.

(vi) Show that $K_{r,s}$ is not a tree whenever $r \ge s \ge 2$.

3. Is the graph illustrated in Figure 17.1.3 bipartite ?

Section 17.2 (Edge colorings of graphs)

- 1. What is the least number of colors required for an edge-coloring of
 - (i) the complete graph K_4 ?
 - (ii) the complete graph K_5 ?

(iii) the cube graph Q_3 ?

2. Prove that there is no edge 3-coloring of Petersen's graph.

3. Prove that $K_{n,n}$ has an edge *n*-coloring, for every $n \ge 1$.

4. Show that the graph in Figure 17.2.4 is bipartite and construct an edge 3-coloring of it.

5. Show that Q_3 can be 3-edge colored. What about Q_k for general k?

Section 17.4 (Matchings)

1. Use Hall's condition to show that the graph in Figure 17.4.1 has no complete matching.

EXERCISES: CHAPTER 17

- **2.** Let M be the matching denoted by the wavy lines in Figure 17.4.1.
 - (i) Find an alternating path for M beginning at x_2 .
 - (ii) Use it to construct a matching M' with |M'| = 4.
 - (iii) Is M' a maximum matching ?

3. Suppose that each member of a set of people has a list of k books which he or she wishes to borrow from a library. Suppose also that each book appears on exactly k lists. Show that it is possible for everyone to borrow one of the books on his or her list at the same time.

Section 17.5 (Maximum matchings)

1. Let G = (X, Y, E) be the bipartite graph with $X = \{a, b, c, d, e\}, Y = \{v, w, x, y, z\}$ and $E = \{av, ax, bv, bz, cw, cy, cz, dy, dz, ez\}$. Use the augmenting path algorithm to find a complete matching in G, starting from the matching $M = \{av, bz, cy\}$.

2. Let G = (X, Y, E) be the graph depicted in Figure 17.5.2. For which 3-subsets of X is it possible to find a maximum matching in G such that the three given vertices are matched ?

3. Suppose G = (X, Y, E) is a bipartite graph with |X| = |Y| = n. Show that if δ is the minimum degree of a vertex then

 $|A| - |N(A)| \le n - \delta \quad \forall A \subseteq X.$

Deduce that if |E| > (m-1)n then G has a matching of size m.

Section 17.6 (Transversals for families of finite sets)

1. Let S be the family of sets

 $\{a, b, l, e\}, \{l, e, s, t\}, \{s, t, a, b\}, \{s, a, l, e\}, \{t, a, l, e\}, \{s, a, l, t\}.$

Find a transversal for S.

2. Show that there is no transversal for the family S in Exercise 1 in which the first three sets are represented by e, l, s respectively.

3. Prove that the family of sets

 $\{a, m\}, \{a, r, e\}, \{m, a, r, e\}, \{m, a, s, t, e, r\}, \{m, e\}, \{r, a, m\}$

has no transversal, by showing explicitly that Hall's condition is not satisfied.

4. Let $\{X_1, X_2, \ldots, X_n\}$ be a family of sets and let X denote their union. Show that

2

if the family has a transversal then, given any $x \in X$, there is a transversal containing x.

Review Section 17.7

1. Show that if a 3-regular graph has a Hamiltonian cycle, then it has an edge 3-coloring.

2. There are *n* married couples at a party. Conversations only take place between two people of the opposite sex who are not married. Represent this situation by means of a bipartite graph and show explicitly that your graph has an edge (n - 1)-coloring.

3. Let $S = \{a, d, i, m, o, r, s, t\}$ and let S be the family of subsets $S = \{\{r, o, a, d\}, \{r, i, o, t\}, \{r, i, d, s\}, \{s, t, a, r\}, \{m, o, a, t\}, \{d, a, m, s\}, \{m, i, s, t\}\}.$ Show that any 7-subset of S is a transversal for S.

4. Let X denote the union of the family of sets $\{X_1, X_2, \ldots, X_n\}$, and suppose x and y are members of X. Show by an example that the family may have a transversal, but not a transversal which contains both x and y.

5. Let the elements of \mathbb{Z}_{14} represent the vertices of the cycle graph C_{14} , and let G be the graph obtained from C_{14} by adding the edges $\{i, i+5\}, i = 0, 2, 4, 6, 8, 10, 12$. Show that G is bipartite and construct an edge coloring which uses the smallest possible number of colors. (NOTE: G is called *Heawood's graph*.)

6. Suppose there are five committees:

 $C_1 = \{a, c, e\}, C_2 = \{b, c\}, C_3 = \{a, b, d\}, C_4 = \{d, e, f\}, C_5 = \{e, f\}.$

Each committee must send a different representative to the Annual Congress of Committees and C_1 wishes to nominate e, C_2 wishes to nominate b, C_3 wishes to nominate a and C_4 wishes to nominate f.

(i) Show that it is not possible to respect the wishes of C_1 , C_2 , C_3 and C_4 .

(ii) Use the augmenting path method to find a complete system of distinct representatives.

(iii) Is it possible to find a complete system of distinct representatives if committee C_1 refuses to change its nomination ?

9. Prove that the complete graph K_{2m} has an edge (2m - 1)-coloring.

10. In projective geometry two triangles $A_1B_1C_1$ and $A_2B_2C_2$ are said to be *in perspective* if A_1A_2 , B_1B_2 and C_1C_2 have a common point X. Desargues' theorem asserts that if the triangles are in perspective then the points P = intersection of A_1B_1 and A_2B_2 , Q = intersection of B_1C_1 and B_2C_2 , and R = intersection of A_1C_1 and A_2C_2 , are collinear.

Let G be the bipartite graph whose vertices represent the ten points and ten lines occurring in the theorem, two vertices being adjacent if and only if they represent a point on the corresponding line. Show that G has a Hamiltonian cycle and construct an edge 3-coloring of G.

13. Show that the following infinite family of sets satisfies Hall's condition but does not have a transversal:

 $X_0 = \{1, 2, 3, \dots\}, X_1 = \{1\}, X_2 = \{1, 2\}, \dots, X_i = \{1, 2, \dots, i\}, \dots$

14. Let X be the union of the family of sets X_1, X_2, \ldots, X_n , and suppose that the family has a transversal. Show that there is a unique transversal if and only if |X| = n.

15. Suppose that we are given two partitions of a set X:

 $X = A_1 \cup A_2 \cup \dots \cup A_n = B_1 \cup B_2 \cup \dots \cup B_n.$

A simultaneous transversal is a set $\{x_1, x_2, ..., x_n\}$ of distinct elements of X such that each part of either partition contains one x_i . Prove that there is a simultaneous transversal if and only if no k of the parts A_i are contained in fewer than k of the parts B_i $(1 \le k \le n - 1)$.

16. Let m and n be positive integers such that $m \ge n$. Construct an explicit edge m-coloring of $K_{m,n}$.

17. Show that if a k-regular graph has an odd number of vertices, then it cannot have an edge k-coloring.

18. Suppose that G is a graph with n vertices, m edges and maximum degree K. Show that if $m > K \lfloor n/2 \rfloor$ then G does not have an edge K-coloring.

19. A vertex cover in a graph G is a set of vertices C such that every edge of G contains at least one vertex in C. Show that if G is bipartite then the size of a maximum matching is equal to the size of a minimum vertex cover.