
ANSWERS: CHAPTER 18

Section 18.1 (Digraphs)

1. See Figure 18.1.1. Two simple c → f paths are

c → b → a → e → f, c → b → a → d → e → f.

Two simple directed cycles out of d are

d → c → b → a → d, d → e → f → a → d.

2. For example,

1 → 2 → 4 → 5 → 7 → 9 → 8 → 6 → 3.

4. (i) Every edge in the graph is counted exactly once in each sum, since each comes

out from exactly one vertex and goes in to exactly one other. In other words, both sums

equal |E|.
(ii) To simplify notation, denote the indegree (resp. outdegree) of vertex v by iv (resp.

ov). Since G is a tournament, iv + ov = n − 1 for every v ∈ V , where |V | = n. Note

also from part (i) that
∑

v∈V iv =
∑

v∈V ov = |E| = n(n−1)
2

. Hence,
∑

v∈V

i2v =
∑

v∈V

[(n− 1)− ov]
2 =

∑

v

(n− 1)2 +
∑

v

o2v −
∑

v

2(n− 1)ov =

= (n− 1)2
∑

v

1 +
∑

v

o2v − 2(n− 1)
∑

v

ov =

= (n− 1)2|V |+
∑

v

o2v − 2(n− 1)|E| =

= n(n− 1)2 +
∑

v

o2v − 2(n− 1)

[

n(n− 1)

2

]

=
∑

v

o2v, v.s.v.

Section 18.3 (Flows and cuts)

1. See Figure 18.3.1 in the facit for a flow of value 10. This is maximum since if we

take S = {s, a, b, d}, T = {c, t}, then the capacity of the cut (S, T ) is

c(S, T ) = c(a, t) + c(d, t) + c(s, c) = 3 + 4 + 3 = 10.

2. See Figure 18.3.2 in the facit for the network and a flow of value 7. A cut of capacity

7 is given by S = {s, a, b}, T = {c, d, t}, since

c(S, T ) = c(a, c) + c(b, d) = 3 + 4 = 7.

By the max-flow min-cut theorem, 7 is the maximum value of a flow.
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3. (i) For any directed edge (v, w), the flow along the edge flows out from v and in

to w. Hence, both sums are just the sum of the flows along all edges in the network,

i.e.: both sums equal
∑

e∈A φ(e).
(ii) If φ is a flow then, for any vertex v which is neither the source nor the sink one has,

by conservation of flow, outflow(v) = inflow(v). Hence, from part (i) it follows in this

case, after cancellation of all terms involving v 6∈ {s, t}, that

outflow(s) + outflow(t) = inflow(s) + inflow(t).

But there is no inflow to a source and no outflow from a sink, hence the above reduces

to outflow(s) = inflow(t), v.s.v.

Section 18.4 (The max-flow min-cut theorem)

1. (i) The value of f is the total flow out of the source s, namely 5 + 6 + 0 = 11.

(ii) For example, s → c → e → b → d → t. We can increase the flow by one along this

path. Note that in the case of the “backwards” arc (b, e), this means reducing the flow

along it by one.

(iii) If we augment the flow along the path identified in (ii), then for the new flow f ∗,

the set of vertices reachable from s by an f ∗-augmenting path is S = {s, b, c, e}, while

the set of unreachable ones is T = {a, d, t}. We have

c(S, T ) = c(s, a) + c(b, d) + c(e, t) = 5 + 3 + 4 = 12.

(iv) The flow f ∗, which has value 12, must be maximum.

2. See Figure 18.4.2 in the facit for both the network and a flow f of value 38.

For this flow, the set of vertices reachable from s by an f -augmenting path is S =
{s, a, c, d, e}, while the set of unreachable ones is T = {b, t}. We have

c(S, T ) = c(a, b) + c(d, b) + c(d, t) + c(e, t) = 8 + 6 + 10 + 14 = 38.

Hence, the flow f must be maximum.

Section 18.5 (The labelling algorithm for network flows)

1. We can find the following sequence of augmenting paths:

Step Augmenting path Increase in flow

1 s → a → e → t 40
2 s → a → c → t 10
3 s → b → c → t 5

At this point, each of the two edges into t is saturated, so the flow must be maximum.

This maximum flow is illustrated in Figure 18.5.1 in the facit.

2. (i) We add a supersource s to the left of s1 and s2, and an arc from s to each of
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s1 and s2 of infinite capacity (or at least of sufficiently large capacity that these arcs can

never become saturated by a maximum flow). Similarly, we place a supersink t to the

right of the three ti’s and an infinite-capacity arc from each ti to it.

(ii), (iii) The initial flow f0 which I found “by inspection” is illustrated in Figure

18.5.2(i) in the facit. We can augment the flow as follows. Squiggles represent “back-

wards” edges where the flow is reduced.

Step Augmenting path Increase in flow

1 s → s1 → b → t3 2
2 s → s1 → b → c  a  d → t1 2

The flow f at this point is illustrated in Figure 18.5.2(ii) in the facit. It has value

f(s, s1) + f(s, s2) = 27 + 12 = 39. The set of vertices reachable from s by an f -

augmenting path is S = {s, s1, s2, a, b, c, d}, while the set of unreachable ones is

T = {e, t1, t2, t3, t}. We have

c(S, T ) = c(a, t1)+c(d, t1)+c(d, t2)+c(c, e)+c(b, t3)+c(s2, e) = 4+2+7+16+4+6 = 39.

Hence, the flow f must be maximum.

Review Section 18.6

1. For example,

1 → 4 → 2 → 3 → 6 → 7 → 8 → 5.

2. (i) The scores of the 9 players, ordered 1− 9, are 4, 3, 4, 3, 3, 5, 4, 4, 6. Hence the

score sequence is (3, 3, 3, 4, 4, 4, 4, 5, 6).
(ii) Every match has a single winner. Hence the sum of the scores is just the total num-

ber of matches played which, since everyone plays everyone once, is
(

n

2

)

= n(n−1)
2

, v.s.v.

3. (i) Every match between two of the k worst players contributes to the score of one of

them. Hence the sum of their scores must be at least
(

k

2

)

.

(ii) LHS: From part (i) and the fact that the si are non-decreasing, we have

ksk ≥
k

∑

i=1

si ≥
k(k − 1)

2
⇒ sk ≥

k − 1

2
, v.s.v.

RHS: Suppose on the contrary that sk > n+k−2
2

. Then sk ≥ n+k−1
2

, since sk is an

integer. Using Ex. 2, part (i) of Ex. 3 and the fact that the scores are non-decreasing it

would follow that

n(n− 1)

2
=

n
∑

i=1

si =
k−1
∑

i=1

si +
n

∑

i=k

si ≥
(k − 1)(k − 2)

2
+ (n− k + 1) · n+ k − 1

2
.

After some algebra, the right-hand side of the inequality simplifies to
n2

−(k−1)
2

, which

is strictly greater than n2
−n
2

, contradiction !
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4. It’s easy to see that a tournament on n players is transitive if and only if the players

can be labelled from 1 to n such that i beats j if and only if i < j. Thus player k beats

those from 1 through k − 1 and no-one else, i.e.: sk = k − 1, v.s.v.

5. There are 2(
n

2
) tournaments since we have two choices for the direction of each

of the
(

n

2

)

edges of Kn. A transitive tournament is determined by a permutation of the

vertices, so there are n! of them1.

6. Pick a player s with the highest score. Let L (resp. W ) be the set of players to

whom s loses (resp. against whom s wins). If x = s, then there is a path of length zero

from s to x, duh ! If x ∈ W , then s → x is a path of length one in the tournament.

Finally, suppose x ∈ L. If there is no path of length two from s to x then in particular

it means that, for every y ∈ W , s → y → x is not a path in the tournament. In other

words, x must have beaten every y ∈ W , i.e.: x beat everyone whom s beat. But x also

beat s, contradicting the assumption that s had the highest score.

9. First, let’s think about how many cuts there are. A cut is a partition (S, T ) of

{s, a, b, c, t} such that s ∈ S and t ∈ T . Hence what determines a cut is which subset

of {a, b, c} one puts in S . Hence there are 23 = 8 possible cuts. The full list of them,

along with their capacities, is given in the following table:

S T c(S, T )

{s} {a, b, c, t} c(s, a) + c(s, b) = 5 + 2 = 7
{s, a} {b, c, t} c(s, b) + c(a, b) + c(a, c) + c(a, t) = 2 + 3 + 1 + 3 = 9
{s, b} {a, c, t} c(s, a) + c(b, c) = 5 + 3 = 8
{s, c} {a, b, t} c(s, a) + c(s, b) + c(c, t) = 5 + 2 + 4 = 11

{s, a, b} {c, t} c(a, t) + c(a, c) + c(b, c) = 3 + 1 + 3 = 7
{s, a, c} {b, t} c(s, b) + c(a, b) + c(a, t) + c(c, t) = 2 + 3 + 3 + 4 = 12
{s, b, c} {a, t} c(s, a) + c(c, t) = 5 + 4 = 9

{s, a, b, c} {t} c(a, t) + c(c, t) = 3 + 4 = 7

Since the minimum capacity of a cut is 7, this must also be the value of a maximum

flow. Such a flow is given by

Arc (s, a) (s, b) (a, b) (a, c) (a, t) (b, c) (c, t)
Flow 5 2 1 1 3 3 4

10. Suppose we apply the algorithm and at some point have a flow in which the flow

along every edge is integer-valued. If we find an augmenting path from source to sink,

then we augment the flow along the path by the minimum of the ‘”spare capacities”

available along the edges in the path. Each spare amount is integer-valued, hence we’re

taking a minimum of integer amounts, which is also an integer amount. Hence, the

1Stirling’s formula says that n! ∼ nne−n
√
2πn, so there are around 2

n log
2
n transitive n-player tour-

naments, compared to around 2
n2/2 tournaments in all.
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augmented flow will also be integer-valued. Since we can start from the everywhere-

zero flow, it follows that the algorithm will always produce a maximum flow which is

integer-valued everywhere.

11. See Figure 18.5.2(ii) in the facit for an example of a mximum flow. The simplest

way to tweak this and still have a maximum flow is to add one unit to the arc (s2, a),
which has four units of spare capacity, and subtract one unit from the arc (s1, a). Call

the old flow f1 and the new flow f2. Now note that f = f1+f2
2

is also a maximum flow2,

by which we mean that the flow along each arc in f is the average of the corrsponding

flows in f1 and f2. But f will be half-integer valued along the arcs (s1, a) and (s2, a).

12. I claim that, in fact, for any two cuts, one has

c(S1, S1) + c(S2, S2) ≥ c(S1 ∩ S2, S1 ∩ S2) + c(S1 ∪ S2, S1 ∪ S2). (0.1)

In particular, if both the cuts on the left of (0.1) are minimal, then so must be both cuts

on the right, and we’re done. Moreover, we must have equality in (0.1) in that case.

To prove (0.1) in general, recall that the capacity of a cut is, by definition, the sum of

the capacities of the arcs that cross it in the “right” direction. Hence it suffices to prove

that, for any arc (v, w) in the network, it appears at least as many times on the left of

(0.1) as it does on the right. We consider four cases:

Case 1: v 6∈ S1 ∪ S2. Then, for any w, the arc (v, w) will not appear at all on ei-

ther side of (0.1).

Case 2: v ∈ S1\S2. The arc (v, w) will appear once on the left of (0.1), namely in

the sum for c(S1, S1), if and only if w 6∈ S1, otherwise it will not appear at all. On the

right, since v 6∈ S2, the arc (v, w) will never appear in the sum for c(S1 ∩ S2, S1 ∩ S2).
It will appear in the sum for c(S1 ∪ S2, S1 ∪ S2) if and only if w 6∈ S1 ∪ S2. If that

holds, then a fortiori w 6∈ S1 holds, so if the arc appears on the right it must also do so

on the left.

Case 3: v ∈ S2\S1. This case is completely analogous to Case 2, just interchange the

roles of S1 and S2.

Case 4: v ∈ S1 ∩ S2. On the left of (0.1), the arc (v, w) will appear

- zero times if w 6∈ S1 ∪ S2, i.e.: if w ∈ S1 ∩ S2,

- once if w ∈ S1∆S2,

- twice if w ∈ S1 ∩ S2, i.e. if w ∈ S1 ∪ S2.

It’s easy to check that exactly the same is true on the right-hand side of (0.1). This

completes the proof of (0.1).

2More generally, any convex combination of maximum flows is also a maximum flow, i.e.: if

f1, f2, . . . , fn are all maximum flows and λ1, λ2, . . . , λn are non-negative constants satisfying
∑n

i=1 λi = 1, then
∑n

i=1 λifi is also a mximum flow.


