
ANSWERS: CHAPTER 19

Section 19.1 (Generalities about recursion)

1. The formula in (3.10) is, literally,

dn =
n
∑

k=0

(−1)k
n!

k!
.

The first two terms cancel out, leaving us with a sum from k = 2 to k = n. But for each

k one has n!/k! =
∏n

j=k+1 j, where for k = n the empty product is interpreted as being

1.

The kth term in the sum is ± a product of n− k integers. Hence the total number of

multiplications performed in the evaluation of dn will be
∑n

k=2(n− k) = (n−1)(n−2)
2

=
O(n2). 3. It’s clear that d1 = 0. We can prove the recursion by induction on n, using

the already known recursion from Ex. 11.4.4. For n = 2 we have 1 = d2 = 2×0+1 =
2d1 + (−1)2, as desired. Suppose dn = ndn−1 + (−1)n holds for some n ≥ 2. This can

be rewritten as dn−1 =
1
n
(dn − (−1)n). From this and Ex. 11.4.4 we compute

dn+1 = n(dn+dn−1) = n

[

dn +
1

n
(dn − (−1)n)

]

= · · · = (n+1)dn+(−1)n+1, v.s.v.

The advantage of using this recursion over that in Ex. 11.4.4 is that each iteration

involves only one multiplication and the addition or subtraction of 1, whereas previously

each iteration involved one multiplication and one “proper” addition. The latter also

required a little more memory since one used both dn−1 and dn−2 to compute dn.

Section 19.2 (Linear recursion)

1. (i) The auxiliary equation is x2 − 3x− 4 = 0 which has roots x1 = 4, x2 = −1. The

general solution to the recursion is thus

un = C1 · 4n + C2 · (−1)n.

Inserting the initial conditions u0 = 1 and u1 = 1 gives the two equations

C1 + C2 = 1, 4C1 − C2 = 1,

whose solution is C1 = 2/5, C2 = 3/5. Thus

un =
1

5
(2 · 4n + 3 · (−1)n) .

(ii) The auxiliary equation is x2− 2x+1 = 0 which has the repeated root x1 = x2 = 1.

The general solution to the recursion is thus

un = C1 + C2 · n.
1
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Inserting the initial conditions u0 = −2 and u1 = 1 gives C1 = −2 and C2 = 3. Thus

un = −2 + 3n.

4. This is the same as Ex. 10.7.17, from which it follows that qn = fn+2 since the

sequences (qn) and (fn) satisfy the same recurrence: qn+2 = qn+1+qn, but q1 = f3 = 2
and q2 = f4 = 3.

5. See Homework 1.

Review Section 19.7

1. (i) The auxiliary equation is x2 + x− 2 = 0 which has roots x1 = 1, x2 = −2. The

general solution to the recursion is thus

un = C1 + C2 · (−2)n.

Inserting the initial conditions u0 = 0 and u1 = 1 gives the two equations

C1 + C2 = 1, C1 − 2C2 = 1,

whose solution is C1 = 1/3, C2 = −1/3. Thus

un =
1

3
(1− (−2)n) .

(ii) The auxiliary equation is x2 − 6x + 8 = 0 which has roots x1 = 4, x2 = 2. The

general solution to the recursion is thus

un = C1 · 4n + C2 · 2n.
Inserting the initial conditions u0 = 1 and u1 = 0 gives the two equations

C1 + C2 = 1, 4C1 + 2C2 = 0,

whose solution is C1 = −1, C2 = 2. Thus un = 2n+1 − 4n.

2. Substituting un = n we can see immediately (no need to multiply out since we

have a common factor of n(n+ 1)(n+ 2)) that

n(n+ 1)(n+ 2)− 5n(n+ 2)(n+ 1) + 4(n+ 1)(n+ 2)n = 0.

If we instead write un = nvn then the recursion becomes

n(n+ 1)(n+ 2)vn+2 − 5n(n+ 2)(n+ 1)vn+1 + 4(n+ 1)(n+ 2)nvn = 0.

Here we can cancel the common factor n(n + 1)(n + 2) and get the linear recursion

vn+2 − 5vn+1 + 4vn = 0. This has auxiliary equation x2 − 5x+ 4 = 0, whose roots are

x1 = 1, x2 = 4. Thus the general solution is vn = C1 + C2 · 4n. The initial conditions

u1 = 12, u2 = 60 correspond to v1 = 12, v2 = 30. Inserting these into the general

solution gives the equations

C1 + 4C2 = 12, C1 + 16C2 = 30,

whose solution is C1 = 6, C2 = 3/2. Thus vn = 6 + 3
2
(4n) = 6 + 3 · 22n−1. Since

un = nvn we finally obtain un = 6n+ 3n22n−1, v.s.v.
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3. Even and odd values of n don’t interact here. For even indices we have

u0 = X, u2 = X + 0, u4 = (X + 0) + 2, u6 = ((X + 0) + 2) + 4, . . .

The general pattern is clear, namely u2n = X +
∑n−1

k=1 2k = X + n(n− 1).

Similarly, for odd indices one can derive u2n−1 = Y +
∑n−1

k=1(2k − 1) = Y + n2.

4. To see that L2n+1 = L2n + n we observe that, if (a, b, c) is an AP in N2n+1, then

either

(i) c ≤ 2n, in which case (a, b, c) is an AP in N2n and there are L2n possibilities for

it, or

(ii) c = 2n + 1. In this case, since a ≥ 1 and c− b = b− a, so b must be one of the

numbers n+ 1, n+ 2, . . . , 2n. So there are n possibilities for the AP in this case.

A similar argument yields L2n = L2n−1 + (n − 1). Putting the two recurrences to-

gether yields, for even indices,

L2n+2 = L2n+1 + n = (L2n + n) + n = L2n + 2n,

and for odd indices,

L2n+1 = L2n + n = (L2n−1 + (n− 1)) + n = L2n−1 + (2n− 1).

Thus, whether k is even or odd, one has Lk+2 = Lk + k, as in Ex. 3. Here the initial

conditions are L0 = L1 = 0, thus L2n = n(n− 1) and L2n+1 = n2.

5. First suppose vertices 0 and 2 get the same colour. Whatever this colour is, there

will be k − 1 options for the colour assigned to vertex 1, since it must be a different

colour than that assigned to its neighbors 0 and 2. If we imagine having coloured 1 first,

we can then remove it and “glue” 0 and 2 together as a single vertex, so that we are

left with n − 2 vertices round a circle which must be coloured according to the same

rule as initially (neighbors get different colours). There are fn−2(k) possible colour-

ings, all of which can be combined with the colour given to vertex 1. By MP, there are

(k − 1)fn−2(k) possible colourings of all n vertices in this case.

Secondly, suppose 0 and 2 get different colours. Whatever these colours are, there

will be k − 2 options for the colour given to vertex 1. Having removed vertex 1, we no

longer glue together 0 and 2, since they now get different colours. We’re thus left in this

case with n − 1 vertices, which can be coloured in fn−1(k) ways. Combining with the

colour given to vertex 1 there are, by MP, a total of (k − 2)fn−1(k) possible colourings

in this case.

Finally, we obtain the desired recursion by AP.

To deduce the explicit formula for fn(k), we can proceed by induction on n for each

fixed k. The base cases are n = 3 and n = 4, in which cases the formula states that

f3(k) = (k − 1)[(k − 1)2 + (−1)3] = · · · = k(k − 1)(k − 2),

f4(k) = (k − 1)[(k − 1)3 + (−1)4] = · · · = k(k − 1)[(k − 1) + (k − 2)2].
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We first check that these formulas are correct. For n = 3, simply note that if we have

only three vertices then they must all get different colours, so the number of possible

colourings is P (k, 3) = k(k − 1)(k − 2), v.s.v. For n = 4, first note that vertices 0 and

1 must get different colours, so there are P (k, 2) = k(k − 1) possible ways to colour

these two. When we come to colour vertices 2 and 3, there are then two cases: (i) 2 gets

the same colour as 0. In this case, 3 can be given any other colour, so there are k − 1
ways to complete the colouring (ii) 2 gets a different colour to 0. Here there are k − 2
possible colours for 2, since it must also get a different colour to 1. Then 3 must get

a different colour from both 0 and 2, hence it also has k − 2 possible colours. By MP,

there are (k−2)2 ways to complete the colouring in case (ii). Finally, AP+MP yield the

correct formula for f4(k).
Having verified the base cases, we just use induction and compute that

fn(k) = (k − 1) · (k − 1)[(k − 1)n−3 + (−1)n−2] + (k − 2) · (k − 1)[(k − 1)n−2 + (−1)n−1] =

= (k − 1)n−2[(k − 1) + (k − 2)(k − 1)] + (−1)n[(k − 1)2 − (k − 2)(k − 1)] =

= (k − 1)n + (−1)n · (k − 1) = (k − 1)[(k − 1)n−1 + (−1)n], v.s.v.

6. By induction on n. If n = 1 then there is one vertex and so k = k · (k − 1)0

ways to colour it, so the formula is correct in this case. Now consider any tree T with

n ≥ 2 vertices. Let v be any leaf. Removing v leaves a tree T ′ on n − 1 vertices. By

the induction hypothesis, T ′ can be coloured in k(k − 1)n−2 ways. There will then be

k−1 possibilites for v’s colour when reinserted into the tree, since it will have only one

neighbor and it must get a different colour from that vertex. By MP, the total number of

ways to colour T is [k(k − 1)n−2] · (k − 1) = k(k − 1)n−1, v.s.v.

10. (i) We can prove this by induction on n. For n = 1 it states that f2 = f3 − 1,

which is correct since f2 = 1 and f3 = 2. Suppose the identity holds for n = m and

consider n = m+ 1:

m+1
∑

k=1

f2k =

(

m
∑

k=1

f2k

)

+ f2m+2
induction

= (f2m+1 − 1) + f2m+2 =

= (f2m+1 + f2m+2)− 1 = f2m+3 − 1, v.s.v.

(ii) I don’t see any easier way to prove this than to use the explicit formula for fn derived

in class (see also Ex. 19.2.2 in Biggs),

fn =
1√
5

(

γn + (−1)n+1γ−n
)

, γ±1 =

√
5± 1

2
.

The RHS of our desired equation is

f3n =
1√
5

(

γ3n + (−1)3n+1γ−3n
)

.
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The LHS can be manipulated as follows:

f 3
n+1 + f 3

n − f 3
n−1 =

[

1√
5

(

γn+1 + (−1)n+2γ−(n+1)
)

]3

+

+

[

1√
5

(

γn + (−1)n+1γ−n
)

]3

+

[

1√
5

(

γn−1 + (−1)nγ−(n−1)
)

]3

=

=
1

5
√
5
(A+ B + C +D),

where

A = γ3n+3 + γ3n − γ3n−3,

B = 3[(−1)n+2γn+1 + (−1)n+1γn − (−1)nγn−1],

C = 3[γ−(n+1) + γ−n − γ−(n−1)],

D = (−1)3n+6γ−(3n+3) + (−1)3n+3γ−3n − (−1)3nγ−(3n−3).

It now suffices to show that

A = 5γ3n, B = C = 0, D = 5 · (−1)3n+3γ−3n.

Let’s start with A. We can write it as A = γ3n(γ3 + 1− γ−3). On the one hand,

γ3 = γ · γ2 = γ(γ + 1) = γ2 + γ = (γ + 1) + γ = 2γ + 1.

On the other hand,

γ−1 = γ − 1 ⇒ γ−2 = 1− γ−1 = 1− (1− γ) = 2− γ ⇒
⇒ γ−3 = (γ − 1)(2− γ) = −γ2 + 3γ − 2 = −(γ + 1) + 3γ − 2 = 2γ − 3.

Thus γ3 + 1− γ−3 = (2γ + 1) + 1− (2γ − 3) = 5, which proves that A = 5 · γ3n.

Next consider B. We can write it as

B = 3 · (−1)nγn−1[−1− γ + γ2] = 0, since γ2 = γ + 1, v.s.v.

Similarly,

C = 3γ−(n+1)[1 + γ − γ2] = 0.

Finally,

D = (−1)3n+3γ−3n[(−1)3γ−3 + 1− (−1)−3γ3] =

= (−1)3n+3γ−3n[−γ−3 + 1 + γ3]
see A
= 5 · (−1)3n+3γ−3n, v.s.v.

11. CASE 1: A subset contains n. Then it can’t contain n− 1, so must contain k− 1 of

the numbers up to n− 2. Thus λ(n− 2, k − 1) possibilities.

CASE 2: A subset doesn’t contain n. Then it contains k of the numbers up to n− 1,

so λ(n− 1, k) possibilities.

Then the addition principle yields the recursion. The explicit formula can be verified by

induction on n+ k. Since λ(n− 2, k − 1) appears in the recursion our base case is all

pairs (n, k) such that n+ k ≤ 3. These pairs are (1, 0), (1, 1), (2, 0), (2, 1), (3, 0). It

is easy to see directly that

- λ(n, 0) = 1 since the only possible subset is the empty set, for any n. This accords

with the formula: λ(n, 0) =
(

n−0+1
0

)

=
(

n+1
0

)

= 1.
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- λ(n, 1) = n, since any of the n elements can be chosen. This accords with the

formula: λ(n, 1) =
(

n−1+1
1

)

=
(

n

1

)

= n.

The induction step is then carried out as follows:

λ(n, k) = λ(n− 2, k − 1) + λ(n− 1, k) =

=

(

(n− 2)− (k − 1) + 1

k − 1

)

+

(

(n− 1)− k + 1

k

)

=

=

(

n− k

k − 1

)

+

(

n− k

k

)

(2.2)
=

(

n− k + 1

k

)

, v.s.v.

To prove the formula directly, consider a k-subset of {1, . . . , n} satisfying our require-

ments. List its elements in increasing order as 1 ≤ x1 < x2 < · · · < xk ≤ n. Set

y1 = x1 − 1; yi = xi − xi−1 − 2, i = 2, . . . , k; yk+1 = n− xk.

Then
k+1
∑

i=1

yi = n− (2k − 1) and yi ≥ 0 ∀ i, (0.1)

where the latter is due to the fact that no two xi are consecutive. Moreover there is a

1− 1 correspondence between the sequences (x1, . . . , xk) satisfying our requirements

and the sequences (y1, . . . , yk+1) satisfying (0.1). Thus λ(n, k) equals the number of

latter sequences which, by Example 2.11 in the lecture notes, is
(

(n−(2k−1))+(k+1)−1
(k+1)−1

)

=
(

n−k+1
k

)

, v.s.v.

12. Label the numbers clockwise as 1, 2, . . . , n and consider two cases:

CASE 1: 1 is chosen. Then neither n nor 2 can be chosen and we still have to choose

k − 1 of the n − 3 numbers 3, 4, . . . , n − 1, in such a way that we never choose two

which are adjacent. But now “adjacent” is the same thing on the real line as on the

circle, so there are λ(n− 3, k − 1) possibilities.

CASE 2: We don’t choose 1. Then k of the n− 1 numbers 2, 3, . . . , n must be cho-

sen in such a way that no two which are adjacent are chosen. Once again, “adjacent”

now means the same thing on the real line as on the circle so there are λ(n − 1, k)
possibilities.

The addition principle yields the desired recursion for µ(n, k). Then using the formula

for λ(·, ·) from Ex. 11 and noting that
(

n− k − 1

k − 1

)

=
(n− k − 1)!

(k − 1)!(n− 2k)!
=

(n− k)!

k!(n− 2k)!
× k

n− k
=

(

n− k

k

)

× k

n− k
,

(0.2)

we compute as follows:

µ(n, k) = λ(n− 1, k) + λ(n− 3, k − 1) =

(

(n− 1)− k + 1

k

)

+

(

(n− 3)− (k − 1) + 1

k − 1

)

=

=

(

n− k

k

)

+

(

n− k − 1

k − 1

)

(0.2)
=

(

n− k

k

)[

1 +
k

n− k

]

=
n

n− k

(

n− k

k

)

, v.s.v.


