EXERCISES: CHAPTER 25

Section 25.3 (The binomial theorem for negative exponents)

- 1. Write down, and simplify wherever possible, the coefficient of
 - (i) x^3 in $(1+2x)^{-7}$ (ii) x^n in $(1-x)^{-4}$ (iii) x^{2r} in $(1-x)^{-r}$.
- 2. Write down the first four terms and the general term in the power series $(1 x)^{-3}$.

3. Let a_n be the coefficient of x^n in the power series $(1 - x - x^2)^{-1}$. Show that

$$a_n = \binom{n}{0} + \binom{n-1}{1} + \binom{n-2}{2} + \dots + \binom{n-r}{r},$$

where r is the greatest integer such that $0 \le r \le n - r$.

4. What is the coefficient of x^n in the power series

$$\frac{1+2x+2x^2}{1-3x+3x^2-x^3} ?$$

5. If a_0, a_1, \ldots, a_{6r} and b_0, b_1, \ldots, b_{3r} are defined by

$$(1 - x + x^2)^{3r} = \sum_{i=0}^{6r} a_i x^i,$$
$$(1 + x)^{3r} = \sum_{i=0}^{3r} b_i x^i,$$

show that

$$\sum_{i=0}^{3r} a_i b_{3r-i} = \binom{3r}{r}.$$

Section 25.4 (Generating functions)

1. Use the generating function method to find a formula for u_n when the sequence (u_n) is defined by

$$u_o = 1, \quad u_1 = 1, \quad u_{n+2} - 4u_{n+1} + 4u_n = 0 \quad \forall \ n \ge 0.$$

EXERCISES: CHAPTER 25

2. Suppose A(x) is the generating function for the sequence (a_n) . What are the generating functions for the sequences (p_n) , (q_n) and (r_n) defined as follows ?:

(i) $p_n = 5a_n$; (ii) $q_n = a_n + 5$; (iii) $r_n = a_{n+5}$.

3. Show that $x(1+x)/(1-x)^3$ is the generating function for the sequence whose *n*th term is n^2 .

4. Let A(x) be the generating function for the sequence (a_n) and define $s_n = \sum_{i=0}^n a_i$. Show that the generating function for (s_n) is $S(x) = \frac{A(x)}{1-x}$. Use this result in conjunction with Ex. 3 to find a formula for $\sum_{i=0}^n i^2$.

Section 25.5 (The homogeneous linear recursion)

1. Use the auxiliary equation method to find a formula for u_n when the sequence (u_n) is defined by

(i) $u_0 = 1, u_1 = 3, u_{n+2} - 3u_{n+1} - 4u_n = 0 \ (n \ge 0)$ (ii) $u_0 = 2, u_1 = 0, u_2 = -2, u_{n+3} - 6u_{n+2} + 11u_{n+1} - 6u_n = 0 \ (n \ge 0)$ (iii) $u_0 = 1, u_1 = 0, u_2 = 0, u_{n+3} - 3u_{n+1} + 2u_n = 0 \ (n \ge 0).$

2. Professor McBrain climbs stairs in an erratic fashion. Sometimes he takes two stairs in one stride, sometimes only one. Find a formula for b_n , the number of different ways in which he can climb n stairs.

3. Suppose the sequence (z_n) is defined by

$$z_0 = 1$$
, $z_{n+1} = \frac{z_n - a}{z_n - b} \quad \forall \ n \ge 0$,

where a and b are real numbers and $b \neq 1$. Show that if the sequence (u_n) satisfies $\frac{u_{n+1}}{u_n} = z_n - b$ then

 $u_{n+2} + (b-1)u_{n+1} + (a-b)u_n = 0 \ \forall n \ge 0.$

Hence find a formula for z_n when a = 0 and b = 2.

4. Let (u_n) , (v_n) and (w_n) be the sequences defined by $u_0 = v_0 = w_0 = 1$ and

$$\begin{bmatrix} u_{n+1} \\ v_{n+1} \\ w_{n+1} \end{bmatrix} = \begin{bmatrix} 4 & -3 & -2 \\ 0 & 1 & 0 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} u_n \\ v_n \\ w_n \end{bmatrix} \quad \forall \ n \ge 0.$$

Show that (u_n) satisfies a homogeneous linear recursion and hence find a formula for u_n .

Section 25.6 (Non-homogeneous linear recursions)

1. Show that the generating function for the sequence (u_n) defined by the recursion

$$u_0 = 1, \quad u_{n+1} - 2u_n = 4^n \ \forall \ n \ge 0$$

is

$$U(x) = \frac{1 - 3x}{(1 - 2x)(1 - 4x)}$$

Deduce that $u_n = 2^{2n-1} + 2^{n-1}$.

2. Let q_n be the number of words of length n in the alphabet $\{a, b, c, d\}$ which contain an odd number of b's. Show that

$$q_{n+1} = 4^n + 2q_n \quad \forall \ n \ge 1.$$

Hence find the generating function Q(x) for (q_n) , assuming $q_0 = 0$, and show that $q_n = \frac{1}{2}(4^n - 2^n)$.

3. Show that the generating function for the sequence defined by

$$u_0 = 1, \quad u_{n+1} - 2u_n = n\alpha^n \quad \forall \ n \ge 0$$

is

$$u(x) = \frac{1}{1 - 2x} + \frac{\alpha x^2}{(1 - 2x)(1 - \alpha x)^2}$$

provided $\alpha \neq 2$. Hence find a formula for u_n . What happens when $\alpha = 2$?

Review Section 25.7

2. Write down the first four terms and the general term in the power series for $(1+x)^{-5}$.

3. Find the coefficient of x^n in the power series for

$$\frac{26 - 60x + 25x^2}{(1 - 2x)(1 - 5x)^2}$$

4. Find the first four terms and the coefficient of x^n in the power series for

$$\frac{1-x-x^2}{(1-2x)(1-x)^2}.$$

7. Use the method of Ex. 25.4.4 to find formulae for $\sum_{i=1}^{n} i^3$ and $\sum_{i=1}^{n} i^4$.

9. By taking the derivative of the binomial expansion show that $\sum_{k=1}^{n} k \binom{n}{k} = 2^{n-1}n$.

10. Use the formula $(1 - x^2)^{-n} = (1 - x)^{-n}(1 + x)^{-n}$ to prove that

$$\sum_{i=0}^{r} (-1)^{i} \binom{n+r-i-1}{r-i} \binom{n+i-1}{i} = \begin{cases} 0, & \text{if } r \text{ is odd;} \\ \binom{n+r/2-1}{r/2}, & \text{if } r \text{ is even.} \end{cases}$$

11. Find an expression for $(1 - x)^{-n}(1 - x^k)^n$ as a polynomial of degree n(k - 1) and hence prove that, when $r \ge nk$,

$$\sum_{i=0}^{n} (-1)^{i} \binom{n+r-ik-1}{n-1} \binom{n}{i} = 0.$$

12. Write down the generating function for the sequence (u_n) whose terms represent the number of ways of distributing n different books to four people.

13. Let c_r be the number of ways in which the total r can be obtained when four dice are thrown. Explain why the generating function for the sequence (c_r) is

$$C(x) = (x + x2 + x3 + x4 + x5 + x6)4.$$

14. Write down the generating function for the numbers b_r of integers n in the range $0 \le n \le 10^m - 1$ for which the sum of the base-10 digits is r.

15. Use the generating function method to solve the following recursion:

$$u_0 = 2, \quad u_1 = -6, \quad u_{n+2} + 8u_{n+1} - 9u_n = 8(3^{n+1}) \quad \forall n \ge 0.$$

16. Find the general form of the solution to the recursion

$$y_{n+2} - 6y_{n+1} + 9y_n = 2^n + n \quad \forall n \ge 0.$$

17. Let $\lambda(n, k)$ be the numbers in Ex. 19.7.11. For fixed k let $F_k(x)$ be the generating function of the sequence $(\lambda(n, k))_{n=0}^{\infty}$. Find a recursion for $F_k(x)$ and use this to give another proof that $\lambda(n, k) = \binom{n-k+1}{k}$.

18. Use the generating function method to solve the recursion

$$u_0 = 1, \quad u_{n+1} = 3u_n + 2^{n-1} \ \forall \ n \ge 0.$$

19. The *exponential generating function (EGF)* for the sequence (u_n) is defined to be the power series

$$U(x) = \sum_{n=0}^{\infty} \frac{u_n}{n!} x^n.$$

Use the recursion established in Ex. 19.1.3 to show that the EGF for the sequence (d_n) is $e^{-x}/(1-x)$. Use this to give another proof of the formula (3.10).

20. Let $\hat{Q}(x)$ be the EGF for the numbers q_n , where q_n is the total number of partitions of an *n*-set. Use the formula obtained in Ex. 12.7.10 to prove that $\hat{Q}(x) = \exp(e^x - 1)$.