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Section 25.3 (The binomial theorem for negative exponents)

1. (i) 23 × (−1)3
(

7+3−1
3

)

= −8×
(

9
3

)

= −672.

(ii)
(

4+n−1
n

)

=
(

n+3
3

)

= (n+1)(n+2)(n+3)
6

.

(iii)
(

r+2r−1
2r

)

=
(

3r−1
r−1

)

.

2.

(1− x)−3 =
∞
∑

n=0

(

3 + n− 1

n

)

xn =
∞
∑

n=0

(

n+ 2

n

)

xn =

=
∞
∑

n=0

(

n+ 2

2

)

xn =
∞
∑

n=0

(n+ 1)(n+ 2)

2
xn = 1 + 3x+ 6x2 + 10x3 + . . . .

3. First note that

(1− x− x2)−1 =
∞
∑

m=0

(x+ x2)m =
∞
∑

m=0

[x(1 + x)]m =

=
∞
∑

m=0

xm(1 + x)m =
∞
∑

m=0

xm

(

m
∑

k=0

(

m

k

)

xk

)

.

For each pair (m, k) such that 0 ≤ k ≤ m and m + k = n we will get a contribution

of
(

m
k

)

to the coefficient of xn. Note that m + k = n ⇒ k = n − m so k ≤ m iff

n−m ≤ m, i.e.: iff m ≥ n/2. Hence the total coefficient of xn will be

∑

n/2≤m≤n

(

m

n−m

)

m:=n−l
=

⌊n/2⌋
∑

l=0

(

n− l

l

)

, v.s.v.

4. The denominator is (1− x)3 so the rational function expands (see Ex. 2) as

(1 + 2x+ 2x2)(1− x)−3 = (1 + 2x+ 2x2)

( ∞
∑

m=0

(m+ 1)(m+ 2)

2
xm

)

.

Hence the coefficient of xn will be

(n+ 1)(n+ 2)

2
+ 2×

n(n+ 1)

2
+ 2×

(n− 1)n

2
= · · · =

5n2 + 3n+ 2

2
.

1
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5. The LHS is, by definition of polynomial multiplication, the coefficient of x3r in

(
∑

aix
i)(
∑

bix
i). But
(

6r
∑

i=0

aix
i

)(

3r
∑

i=0

bix
i

)

= (1− x+ x2)3r(1 + x)3r =

= [(1− x+ x2)(1 + x)]3r = (1 + x3)3r =
3r
∑

k=0

(

3r

k

)

x3k.

Hence the coefficient of x3r is
(

3r
r

)

, v.s.v.

Section 25.4 (Generating functions)

1. Let U(x) :=
∑∞

n=0 unx
n. Given that u0 = 1 we can write, firstly,

U(x) = 1 +
∞
∑

n=1

unx
n = 1 + x

( ∞
∑

n=0

un+1 x
n

)

⇒

⇒

∞
∑

n=0

un+1 x
n =

U(x)− 1

x
. (0.1)

Then, using also u1 = 1 and the recursion,

U(x) = 1 + x+
∞
∑

n=2

unx
n = (1 + x) + x2

( ∞
∑

n=0

un+2 x
n

)

=

= (1 + x) + x2

(

4
∞
∑

n=0

un+1x
n − 4

∞
∑

n=0

unx
n

)

=

(0.1)
= (1 + x) + x2

(

4×
U(x)− 1

x
− 4U(x)

)

⇒

⇒ U(x) = (1 + x) + 4x(U(x)− 1)− 4x2U(x) ⇒

⇒ (1− 4x+ 4x2)U(x) = 1− 3x ⇒ U(x) =
1− 3x

1− 4x+ 4x2
.

But then, using the Binomial Theorem,

1− 3x

1− 4x+ 4x2
=

1− 3x

(1− 2x)2
= (1− 3x)(1− 2x)−2 =

= (1− 3x)

( ∞
∑

m=0

(

m+ 2− 1

m

)

(2x)m

)

= (1− 3x)

( ∞
∑

m=0

(m+ 1) · 2m · xm

)

.

Hence the coefficient of xn, which by definition is equal to un, is given by

un = (n+ 1)2n − 3n2n−1 =
(

1−
n

2

)

2n.

2. Call the asked for generating functions P (x), Q(x), R(x) respectively. By defini-

tion, A(x) =
∑∞

n=0 anx
n.
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(i)

P (x) =
∞
∑

n=0

pnx
n =

∞
∑

n=0

(5an)x
n = 5

∞
∑

n=0

anx
n = 5A(x).

(ii)

Q(x) =
∞
∑

n=0

qnx
n =

∞
∑

n=0

(an + 5)xn =
∞
∑

n=0

anx
n + 5

∞
∑

n=0

xn = A(x) +
5

1− x
.

(iii) First note that

∞
∑

n=5

anx
n = x5

( ∞
∑

n=5

anx
n−5

)

= x5

( ∞
∑

n=0

an+5 x
n

)

= x5R(x).

Thus,

A(x) = (a0 + a1x+ a2x
2 + a3x

3 + a4x
4) + x5R(x) ⇒

⇒ R(x) =
A(x)− (a0 + a1x+ a2x

2 + a3x
3 + a4x

4)

x5
.

3. I will give two different solutions to this problem for the sake of pedagogy.

First Solution: Use the binomial theorem (see Ex. 25.3.2):

x(1 + x)

(1− x)3
= x(1 + x)(1− x)−3 = (x+ x2)

( ∞
∑

m=0

(m+ 1)(m+ 2)

2
xm

)

.

The coefficient of xn has contributions from m = n − 1 and m = n − 2 and is thus
n(n+1)

2
+ (n−1)n

2
= n2, v.s.v.

Second Solution: Let G(x) :=
∑∞

n=0 n
2xn. Firstly,

G(x) = 0 + x+ x2

∞
∑

n=2

n2xn−2 ⇒

∞
∑

n=2

n2xn−2 =
G(x)

x2
−

1

x
. (0.2)

Secondly, by the Binomial Theorem,

1

1− x
=

∞
∑

n=0

xn.

Differentiating both sides once gives

1

(1− x)2
=

∞
∑

n=1

nxn−1 = 1 + x

( ∞
∑

n=2

nxn−2

)

⇒

⇒

∞
∑

n=2

nxn−2 =
1

x(1− x)2
−

1

x
. (0.3)
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Differentating a second time gives

2

(1− x)3
=

∞
∑

n=2

n(n− 1)xn−2 =
∞
∑

n=2

n2xn−2 −

∞
∑

n=2

nxn−2 =

(0.2) + (0.3)
=

(

G(x)

x2
−

1

x

)

−

(

1

x(1− x)2
−

1

x

)

⇒

⇒ G(x) = x2

(

2

(1− x)3
+

1

x(1− x)2

)

= · · · =
x(1 + x)

(1− x)3
v.s.v.

4.

A(x)

1− x
= A(x) · (1− x)−1 =

( ∞
∑

l=0

alx
l

)( ∞
∑

m=0

xm

)

.

When we multiply out, we’ll get a contribution of al to the coefficient of xn from (alx
l)·

xn−l. Thus, we’ll get such a contribution for every l = 0, 1, . . . , n which means that

the total coefficient of xn is
∑n

l=0 al = sn, v.s.v.

From Ex. 3 we know that

A(x) =
∞
∑

n=0

n2xn =
x(1 + x)

(1− x)3
.

Let sn :=
∑n

i=0 i
2 and S(x) :=

∑∞
n=0 snx

n. By Ex. 3 we have

S(x) =
A(x)

1− x
=

x(1 + x)

(1− x)4
=

= (x+ x2)

( ∞
∑

m=0

(

m+ 4− 1

m

)

xm

)

= (x+ x2)

( ∞
∑

m=0

(m+ 1)(m+ 2)(m+ 3)

6
xm

)

.

There are contributions to the coefficient of xn coming from m = n−1 and m = n−2.

Thus the total coefficient is

n(n+ 1)(n+ 2)

6
+
(n− 1)n(n+ 1)

6
=

n(n+ 1)

6
((n+ 2) + (n− 1)) =

n(n+ 1)(2n+ 1)

6
.

In other words, we recover the well-known formula

sn =
n
∑

i=0

i2 =
n(n+ 1)(2n+ 1)

6
.

Section 25.5 (The homogeneous linear recursion)

1. (i) The auxiliary equation is x2 − 3x − 4 = 0, which has roots x1 = 4, x2 = −1.

Hence the general solution is

un = C1 · 4
n + C2 · (−1)n.

Inserting the initial conditions yields the two equations

C1 + C2 = 1, 4C1 − C2 = 3,
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whose solution is C1 = 4/5, C2 = 1/5. Hence,

un =
1

5

(

4n+1 + (−1)n
)

.

(ii) The auxiliary equation is x3 − 6x2 + 11x− 6 = 0, which has roots x1 = 1, x2 = 2,

x3 = 3. Hence the general solution is

un = C1 + C2 · 2
n + C3 · 3

n.

Inserting the initial conditions yields the three equations

C1 + C2 + C3 = 2, C1 + 2C2 + 3C3 = 0, C1 + 4C2 + 9C3 = −2,

whose solution (after some boring Gauss elimination !) is C1 = 5, C2 = −4, C3 = 1.

Hence,

un = 5− 2n+2 + 3n.

(iii) The auxiliary equation is x3 − 3x+2 = 0, which has roots x1 = x2 = 1, x3 = −2.

Hence the general solution is

un = C1 + C2 · n+ C3 · (−2)n.

Inserting the initial conditions yields the three equations

C1 + C3 = 1, C1 + C2 − 2C3 = 0, C1 + 2C2 + 4C3 = 0,

whose solution is C1 = 8/9, C2 = −2/3, C3 = 1/9. Hence,

un =
1

9
(8− 6n+ (−2)n) .

2. It’s easy to check that b1 = 1, b2 = 2 and bn+2 = bn+1 + bn. Hence bn = fn+1 =
1√
5

(

γn+1 + (−1)n+2γ−(n+1)
)

.

3. We have un+1 = (zn − b)un and

un+2 = (zn+1 − b)un+1 =

(

zn − a

zn − b
− b

)

(zn − b)un = ((zn − a)− b(zn − b))un.

Hence,

un+2 + (b− 1)un+1 + (a− b)un =

= un [(zn − a)− b(zn − b) + (b− 1)(zn − b) + (a− b)] = · · · = un[0] = 0, v.s.v.

When a = 0 and b = 2, the recurrence for un becomes un+2+un+1−2un = 0. This has

auxiliary equation x2+x−2 = 0 and roots x1 = 1, x2 = −2, so un = C1+C2 · (−2)n.

Turning to (zn) we have

zn =
un+1

un

+ b =
C1 + C2 · (−2)n+1

C1 + C2 · (−2)n
+ 2. (0.4)

We have the intitial condition z0 = 1, whose insertion gives

C1 − 2C2

C1 + C2

+ 2 = 1 ⇒ · · · ⇒ C2 = 2C1.

Plugging this back into (0.4), we get

zn =
C1(1 + 2 · (−2)n+1)

C1(1 + 2 · (−2)n)
+ 2 =

1 + 2 · (−2)n+1

1 + 2 · (−2)n
+ 2 = · · · =

3

1 + 2 · (−2)n
.
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4. Denote xn =





un

vn
wn



 and A =





4 −3 −2
0 1 0
1 −1 1



. Then the recursion can be written

as

x0 =





1
1
1



 , xn+1 = Axn ∀ n ≥ 0.

The solution is xn = An
x0. From linear algebra we know that, if A has distinct

eigenvalues λ1, λ2, λ3 then it is diagonalisable, and if v1, v2, v3 are the corresponding

eigenvectors then the solution can be written explicitly as

xn = C1 ·λ
n
1 ·v1+C2 ·λ

n
2 ·v2+C3 ·λ

n
3 ·v3, where





C1

C2

C3



 = [v1 v2 v3]
−1
x0. (0.5)

To find the eigenvalues and eigenvectors of A is a standard linear algebra exercise, so

let me just give you the answer:

λ1 = 1, v1 =





1
1
0



 ; λ2 = 2, v1 =





1
0
1



 ; λ3 = 3, v1 =





2
0
1



 .

Hence, in turn,




C1

C2

C3



 =





1 1 2
1 0 0
0 1 1





−1 



1
1
1



 = · · · =





1
2
−1



 .

Substituting everything into (0.5) we obtain




un

vn
wn



 =





1 + 2n+1 − 2 · 3n

1
2n+1 − 3n



 .

Section 25.6 (Non-homogeneous linear recursions)

1. Let U(x) =
∑∞

n=0 unx
n. From the recursion we obtain

U(x) = 1 + x

( ∞
∑

n=0

un+1 x
n

)

= 1 + x

( ∞
∑

n=0

(2un + 4n)xn

)

=

= 1 + x

(

2 · U(x) +
∞
∑

n=0

(4x)n

)

= 1 + x

(

2 · U(x) +
1

1− 4x

)

.

Thus,

(1− 2x)U(x) = 1 +
x

1− 4x
=

1− 3x

1− 4x
⇒ U(x) =

1− 3x

(1− 2x)(1− 4x)
, v.s.v.
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We next seek a partial fraction decomposition

1− 3x

(1− 2x)(1− 4x)
=

A

1− 2x
+

B

1− 4x

⇔ 1− 3x = A(1− 4x) + B(1− 2x) = (A+ B) + x(−4A− 2B)

⇔ A+ B = 1 and 4A+ 2B = 3 ⇒ A = B =
1

2
.

Hence, using the binomial theorem,

U(x) =
1

2

(

1

1− 2x
+

1

1− 4x

)

=
1

2

( ∞
∑

n=0

(2x)n +
∞
∑

n=0

(4x)n

)

.

The coefficient of xn, namely un, is thus 1
2
(2n + 4n) = 2n−1 + 22n−1, v.s.v.

2. To verify the recursion, we consider an admissable word of length n+1 and consider

two cases:

CASE 1: The first letter is b. Then the remainder of the word, consisting of n letters,

must contain an even number of b’s. There are a total of 4n words of length n in the

alphabet and qn of these have an odd number of b’s. Hence 4n − qn of them have an

even number of b’s.

CASE 2: The first letter is not b. Then there are 3 choices for the first letter. The

remaining n letters constitute a word with an odd number of b’s, so there are qn possi-

bilities for it. By MP, there are a total of 3qn possible words in this case.

By AP, it follows that qn+1 = (4n − qn) + 3qn = 2qn + 4n, v.s.v. This is the same

recursion as in Ex. 1, except that the initial condition q0 = 0 is slightly different. How-

ever, the computations will be very similar to Ex. 1, so let me just note the main points.

First, the generating function Q(x) will turn out to be

Q(x) =
x

(1− 2x)(1− 4x)
.

The partial fraction decomposition will be

x

(1− 2x)(1− 4x)
=

1

2

(

−1

1− 2x
+

1

1− 4x

)

,

and hence Q(x) = 1
2
[
∑∞

n=0(4
n − 2n) xn], v.s.v.

3. First assume α 6= 2. Let u(x) =
∑∞

n=0 unx
n. From the recursion we obtain

u(x) = 1 + x

( ∞
∑

n=0

un+1 x
n

)

= 1 + x

( ∞
∑

n=0

(2un + nαn)xn

)

=

= 1 + x

(

2 · u(x) +
∞
∑

n=0

n(αx)n

)

. (0.6)

Now
1

1− αx
=

∞
∑

n=0

(αx)n.
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Differentiating both sides we get

α

(1− αx)2
= α

( ∞
∑

n=1

n(αx)n−1

)

⇒

· · · ⇒

∞
∑

n=0

n(αx)n =
αx

(1− αx)2
.

Substituting into (0.6) we get

u(x) = 1 + x

(

2 · u(x) +
αx

(1− αx)2

)

,

which after a little algebra reduces to

u(x) =
1

1− 2x
+

αx2

(1− 2x)(1− αx)2
, v.s.v.

The next step is to find a partial fraction decomposition

αx2

(1− 2x)(1− αx)2
=

A

1− 2x
+

B

1− αx
+

C

1− αx)2

⇔ αx2 = A(1− αx)2 + B(1− 2x)(1− αx) + C(1− 2x)

⇔ αx2 = (A+ B + C) + x(−2αA− (α + 2)B − 2C) + x2(α2A+ 2αB)

⇔ A+ B + C = 0, 2αA+ (α + 2)B + 2C = 0, α2A+ 2αB = α.

After boring elimination we get

A =
α

(α− 2)2
, B =

−2(α− 1)

(α− 2)2
, C =

1

α− 2
.

Hence,

u(x) =

(

1 +
α

(α− 2)2

)

1

1− 2x
−

(

2(α− 1)

(α− 2)2

)

1

1− αx
+

(

1

α− 2

)

1

(1− αx)2
.

After further messing with the binomial theorem we obtain the formula

un =

(

1 +
α

(α− 2)2

)

2n −
2(α− 1)

(α− 2)2
αn +

1

α− 2
(n+ 1)αn.

Finally, let’s deal with α = 2. The derivation of the rational function u(x) will be

exactly as before and so we’ll get

u(x) =
1

1− 2x
+

2x2

(1− 2x)3
.

So this time we can apply the binomial theorem directly and write

u(x) =
∞
∑

n=0

2nxn + 2x2

∞
∑

n=0

(n+ 1)(n+ 2)

2
2nxn.

Comparing coefficients of xn we conclude that

un = 2n + 2 ·
(n− 1)n

2
· 2n−2 = · · · = (n2 − n+ 4)2n−2.
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Review Section 25.7

2.

(1 + x)−5 =
∞
∑

n=0

(−1)n
(

n+ 5− 1

n

)

xn =
∞
∑

n=0

(−1)n
(n+ 1)(n+ 2)(n+ 3)(n+ 4)

24
xn =

· · · = 1− 5x+ 15x2 − 35x3 + . . .

3. Call the power series U(x). We begin with a partial fraction decomposition

U(x) =
26− 60x+ 25x2

(1− 2x)(1− 5x)2
=

A

1− 2x
+

B

1− 5x
+

C

(1− 5x)2

⇒ 26− 60x+ 25x2 = A(1− 5x)2 +B(1− 2x)(1− 5x) + C(1− 2x)

⇒ 26− 60x+ 25x2 = (A+ B + C) + x(−10A− 7B − 2C) + x2(25A+ 10B)

⇒ A+ B + C = 26, 10A+ 7B + 2C = 60, 25A+ 10B = 25.

Gauss elimination yields A = 1, B = 0, C = 25. Now apply the binomial theorem:

U(x) =
1

1− 2x
+

25

(1− 5x)2
=

=
∞
∑

n=0

2nxn + 25
∞
∑

n=0

(n+ 1)5nxn =

=
∞
∑

n=0

(2n + (n+ 1)5n+2)xn.

4. Same approach as Ex. 3. Call the power series U(x). We begin with a partial fraction

decomposition

U(x) =
1− x− x2

(1− 2x)(1− x)2
=

A

1− 2x
+

B

1− x
+

C

(1− x)2

⇒ 1− x− x2 = A(1− x)2 + B(1− 2x)(1− x) + C(1− 2x)

⇒ 1− x− x2 = (A+ B + C) + x(−2A− 3B − 2C) + x2(A+ 2B)

⇒ A+B + C = 1, 2A+ 3B + 2C = 1, A+ 2B = −1.

Gauss elimination yields A = 1, B = −1, C = 1. Now apply the binomial theorem:

U(x) =
1

1− 2x
−

1

1− x
+

1

(1− x)2
=

=
∞
∑

n=0

2nxn −

∞
∑

n=0

xn +
∞
∑

n=0

(n+ 1)xn =

=
∞
∑

n=0

(2n + n)xn = 1 + 3x+ 6x2 + 11x3 + . . . .

7. It doesn’t really add any insight to formulate the idea in terms of generating functions,

so let me give you the method in its usual (and most direct) formulation, in case you
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haven’t seen it before. We already know that

n
∑

i=1

i =
n(n+ 1)

2
,

n
∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6
. (0.7)

Step 1: Observe that (i+ 1)4 − i4 = 4i3 + 6i2 + 4i+ 1. Hence,

n
∑

i=1

[(i+ 1)4 − i4] = 4
n
∑

i=1

i3 + 6
n
∑

i=1

i2 + 4
n
∑

i=1

i+
n
∑

i=1

1.

The LHS is a telescoping sum and equals (n + 1)4 − 1. The RHS can be simplified

using (0.7). It follows that

(n+ 1)4 − 1 = 4
n
∑

i=1

i3 + n(n+ 1)(2n+ 1) + 2n(n+ 1) + n

⇒ · · · ⇒

n
∑

i=1

i3 =

[

n(n+ 1)

2

]2

. (0.8)

Step 2: Observe that (i+ 1)5 − i5 = 5i4 + 10i3 + 10i2 + 5i+ 1. Hence,

n
∑

i=1

[(i+ 1)5 − i5] = 5
n
∑

i=1

i4 + 10
n
∑

i=1

i3 + 10
n
∑

i=1

i2 + 5
n
∑

i=1

i+
n
∑

i=1

1.

The LHS is a telescoping sum and equals (n + 1)5 − 1. The RHS can be simplified

using (0.7) and (0.8). It follows that

(n+ 1)5 − 1 = 5
n
∑

i=1

i4 +
5n2(n+ 1)2

2
+

5n(n+ 1)(2n+ 1)

3
+

5n(n+ 1)

2
+ n

⇒ · · · ⇒

n
∑

i=1

i4 =
6n5 + 15n4 + 10n3 − n

30
.

9. The simple binomial theorem (Theorem 2.1 with y = 1) states that, if n ∈ N, then

(x+ 1)n =
n
∑

k=0

(

n

k

)

xk.

Differentiating both sides with respect to x gives

n(x+ 1)n−1 =
n
∑

k=1

k

(

n

k

)

xk−1.

Setting x = 1 yields n 2n−1 =
∑n

k=1 k
(

n
k

)

, v.s.v.
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10. The binomial theorem implies that

(1− x2)−n =
∞
∑

m=0

(

n+m− 1

m

)

x2m,

(1− x)−n =
∞
∑

m=0

(

n+m− 1

m

)

xm,

(1 + x)−n =
∞
∑

m=0

(−1)m
(

n+m− 1

m

)

xm.

Now consider the equation (1 − x2)−n = (1 − x)−n(1 + x)−n in terms of the above

power series. On the LHS, the coefficient of xr is 0 if r is odd, and is
(

n+r/2−1
r/2

)

if r

is even. On the RHS, we’re multiplying two power series, so the total coefficient of xr

will be
r
∑

m=0

(−1)m
(

n+m− 1

m

)(

n+ r −m− 1

r −m

)

,

which is exactly what is claimed in the exercise.

11. (1− xk) = (1− x)(1 + x+ · · ·+ xk−1). Hence,

(1−x)−n(1−xk)n = (1−x)−n[(1−x)(1+x+ · · ·+xk−1)]n = (1+x+ · · ·+xk−1)n,

which is a polynomial of degree n(k − 1), as claimed. On the other hand, the binomial

theorem states that

(1− x)−n =
∞
∑

i=0

(

n+ i− 1

i

)

xi =
∞
∑

i=0

(

n+ i− 1

n− 1

)

xi, (0.9)

(1− xk)n =
n
∑

i=0

(−1)i
(

n

i

)

xki. (0.10)

Since the product is a polynomial of degree n(k− 1), the coefficient of xr must be zero

for any r > n(k− 1). If r ≥ nk then every term on the right of (0.10) will contribute to

the coefficient of xr in the product of (0.10) and (0.9). Hence, for any such r, it follows

from (0.9) and (0.10) that

0 =
n
∑

i=0

(−1)i
(

n

i

)(

n+ (r − ki)− 1

n− 1

)

, v.s.v.

12. Since the books are “different”, there are 4n ways to distribute n of them to four

people, i.e.: un = 4n. Hence,

U(x) =
∞
∑

n=0

unx
n =

∞
∑

n=0

4nxn =
1

1− 4x
.

13. If we multiply out C(x), then we’ll get a term xr for any quadruple (a, b, c, d) such

that we choose xa, xb, xc, xd from the first, second, third and fourth factors respectively

and a + b + c + d = r. Since each factor contains only powers xt, where 1 ≤ t ≤ 6,

we can interpret each such quadruple (a, b, c, d) as a possible result of throwing the
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four dice in order so that the total is r. In other words, coefficient of xr = number of

possible quadruples = number of ways to get a total of r when four dice are thrown.

14. G(x) = (1 + x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9)m.

15. Let U(x) :=
∑∞

n=0 unx
n. Given that u0 = 2 we can write, firstly,

U(x) = 2 +
∞
∑

n=1

unx
n = 2 + x

( ∞
∑

n=0

un+1 x
n

)

⇒

⇒

∞
∑

n=0

un+1 x
n =

U(x)− 2

x
. (0.11)

Then, using also u1 = −6 and the recursion,

U(x) = 2− 6x+
∞
∑

n=2

unx
n = (2− 6x) + x2

( ∞
∑

n=0

un+2 x
n

)

=

= (2− 6x) + x2

(

−8
∞
∑

n=0

un+1x
n + 9

∞
∑

n=0

unx
n + 24

∞
∑

n=0

3nxn

)

=

(0.11)
= (2− 6x) + x2

(

−8×
U(x)− 2

x
+ 9U(x) +

24

1− 3x

)

⇒

⇒ U(x) = (2− 6x)− 8x(U(x)− 2) + 9x2U(x) +
24x2

1− 3x
⇒

⇒ (1 + 8x− 9x2)U(x) = (2 + 10x) +
24x2

1− 3x
= (1 + 9x)(1− x)U(x) ⇒

⇒ U(x) =
2 + 10x

(1 + 9x)(1− x)
+

24x2

(1− 3x)(1 + 9x)(1− x)
=

· · · =
2 + 4x− 6x2

(1− 3x)(1 + 9x)(1− x)
=

2(1 + 3x)(1− x)

(1− 3x)(1 + 9x)(1− x)
=

2(1 + 3x)

(1− 3x)(1 + 9x)
.

Next, we make a partial fraction decomposition,

2(1 + 3x)

(1− 3x)(1 + 9x)
=

A

1− 3x
+

B

1 + 9x

⇒ 2(1 + 3x) = A(1 + 9x) + B(1− 3x)

⇒ A+B = 2, 9A− 3B = 6,

which yields A = B = 1. Hence,

U(x) =
1

1− 3x
+

1

1 + 9x
.

Finally, using the Binomial Theorem,

U(x) =
∞
∑

n=0

3nxn +
∞
∑

n=0

(−1)n · 9n · xn

⇒ un = 3n(1 + (−1)n3n).
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16. Let Y (x) :=
∑∞

n=0 ynx
n. We don’t know the value of y0 but can in any case write,

firstly,

Y (x) = y0 +
∞
∑

n=1

ynx
n = y0 + x

( ∞
∑

n=0

yn+1 x
n

)

⇒

⇒

∞
∑

n=0

yn+1 x
n =

Y (x)− y0
x

. (0.12)

Then, using also y1, the recursion and the fact that

∞
∑

n=0

nxn =
∞
∑

n=0

(n+ 1)xn −

∞
∑

n=0

xn =

=
1

(1− x)2
−

1

1− x
=

x

(1− x)2
, (0.13)

we can compute as follows:

Y (x) = y0 + y1x+
∞
∑

n=2

ynx
n = (y0 + y1x) + x2

( ∞
∑

n=0

yn+2 x
n

)

=

= (y0 + y1x) + x2

(

6
∞
∑

n=0

yn+1x
n − 9

∞
∑

n=0

ynx
n +

∞
∑

n=0

2nxn +
∞
∑

n=0

nxn

)

=

(0.12)+(0.13)
= (y0 + y1x) + x2

(

6×
Y (x)− y0

x
− 9Y (x) +

1

1− 2x
+

x

(1− x)2

)

⇒

⇒ Y (x) = (y0 + y1x) + 6x(Y (x)− y0)− 9x2Y (x) + x2

[

1

1− 2x
+

x

(1− x)2

]

⇒

⇒ (1− 6x+ 9x2)Y (x) = (y0 + (y1 − 6y0)x) + x2

[

1

(1− 2x)
+

x

(1− x)2

]

= (1− 3x)2Y (x),

⇒ Y (x) =
y0 + (y1 − 6y0)x

(1− 3x)2
+ x2

[

1

(1− 2x)(1− 3x)2
+

x

(1− x)2(1− 3x)2

]

.

The second term in square brackets on the right will a priori have a partial fraction

decomposition of the form

A

1− 2x
+

B

1− x
+

C

(1− x)2
+

D

(1− 3x)
+

E

(1− 3x)2

for some fixed constants A, B, C, D, E. The first term will have a partial fraction

decomposition F
1−3x

+ G
(1−3x)2

, but now the constants F and G will depend on y0 and

y1. When we finally use the binomial theorem to expand everything in a power series

we will get a coefficient of xn of the form

yn = (a+ bn) · 1n + c · 2n + (d+ en) · 3n,

where a, b, c will be fixed constans, but d and e will depend on F and G, hence ulti-

mately on y0 and y1. This is the general form of the solution, and to determine the exact

solution requires knowing y0 and y1 and inserting these to solve for d and e.
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17. Let Fk(x) :=
∑∞

n=0 λ(n, k) x
k.

Step 1: k = 0. We have λ(0, 0) = 1 and λ(0, k) = 0 for all k ≥ 1, hence F0(x) = 1.

Step 2: k = 1. We have λ(n, 1) = n, hence

F1(x) =
∞
∑

n=0

nxn (0.13)
=

x

(1− x)2
. (0.14)

Step 3: Suppose k ≥ 2. Note that λ(0, k) = λ(1, k) = 0. Now, on the one hand,

xFk(x) =
∞
∑

n=0

λ(n, k)xn+1 = λ(0, k)x+
∞
∑

n=2

λ(n− 1, k)xn =
∞
∑

n=2

λ(n− 1, k)xn,(0.15)

x2Fk−1(x) =
∞
∑

n=0

λ(n, k − 1)xn+2 =
∞
∑

n=2

λ(n− 2, k − 1)xn.(0.16)

On the other hand, using the recursion derived in Ex. 19.7.11,

Fk(x) = λ(0, k) + λ(1, k)x+
∞
∑

n=2

λ(n, k)xn =

= 0 + 0 +
∞
∑

n=2

[λ(n− 2, k − 1) + λ(n− 1, k)]xn (0.15)+(0.16)
= xFk(x) + x2Fk−1(x),

which implies that, for all k ≥ 2,

Fk(x) =

(

x2

1− x

)

Fk−1(x).

Together with (0.14), it is easily deduced that, for all k ≥ 1,

Fk(x) =
x2k−1

(1− x)k+1
.

Finally, we expand the RHS of this using the binomial theorem to obtain

Fk(x) = x2k−1

∞
∑

m=0

(

(k + 1) +m− 1

m

)

xm = x2k−1

∞
∑

m=0

(

k +m

k

)

xm.

The coefficient of xn is zero for all n < 2k−1 and
(

k+(n−(2k−1))
k

)

=
(

n−k+1
k

)

otherwise.

In other words, for all k ≥ 1,

λ(n, k) =

{

0, if n < 2k − 1,
(

n−k+1
k

)

, if n ≥ 2k − 1,
v.s.v.
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18. Let U(x) :=
∑∞

n=0 unx
n. Given that u0 = 1 and the recursion, we can write

U(x) = 1 +
∞
∑

n=1

unx
n = 1 + x

( ∞
∑

n=0

un+1 x
n

)

= 1 + x

(

3
∞
∑

n=0

unx
n +

1

2

∞
∑

n=0

2nxn

)

=

= 1 + x

(

3U(x) +
1

2(1− 2x)

)

⇒

⇒ (1− 3x)U(x) = 1 +
x

2(1− 2x)
⇒

· · · ⇒ U(x) =
2− 3x

2(1− 2x)((1− 3x)
.

Next, we make a partial fraction decomposition,

2− 3x

2(1− 2x)(1− 3x)
=

A

1− 2x
+

B

1− 3x

⇒ 2− 3x = 2A(1− 3x) + 2B(1− 2x)

⇒ 2A+ 2B = 2, 6A+ 4B = 3,

which yields A = −1/2, B = 3/2. Hence,

U(x) =
−1/2

1− 2x
+

3/2

1− 3x
.

Finally, using the Binomial Theorem,

U(x) = −
1

2

∞
∑

n=0

2nxn +
3

2

∞
∑

n=0

3n · xn

⇒ un =
3n+1

2
− 2n−1.

19. See Homework 1.

20. The relevant result from Ex. 12.7.10 is

qn =
n−1
∑

k=0

(

n− 1

k

)

qk. (0.17)

Let me denote the generating function by Q(x), I don’t want to write a tilde everywhere.

We will first prove that

Q′(x) = exQ(x). (0.18)

To achieve this, first use the definition of EGF:

Q(x) =
∞
∑

n=0

qn
n!
xn.
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Differentiating both sides w.r.t. x gives

Q′(x) =
∞
∑

n=1

qn
(n− 1)!

xn−1.

Now substitute for qn using (0.17):

Q′(x) =
∞
∑

n=1

xn−1

(n− 1)!

(

n−1
∑

k=0

(

n− 1

k

)

qk

)

=

=
∞
∑

n=1

xn−1

(n− 1)!

(

n−1
∑

k=0

(n− 1)!

k!(n− 1− k)!
qk

)

=

(n− 1)! cancels
=

∞
∑

n=1

xn−1

(

n−1
∑

k=0

qk
k!(n− 1− k)!

)

.

Now comes the trick: interchange the order of summation above. Staring at it gives

Q′(x) =
∞
∑

k=0

qk
k!

( ∞
∑

n=k+1

xn−1

(n− 1− k)!

)

=

=
∞
∑

k=0

qk
k!
xk

( ∞
∑

n=k+1

xn−1−k

(n− 1− k)!

)

=

m:=n−1−k
=

∞
∑

k=0

qk
k!
xk

( ∞
∑

m=0

xm

m!

)

=

= ex

( ∞
∑

k=0

qk
k!
xk

)

= exQ(x),

which establishes (0.18). Now rewrite (0.18) as

Q′(x)

Q(x)
= ex =

d

dx
(lnQ(x))

⇒ lnQ(x) =

∫

ex dx+ C = ex + C

⇒ Q(x) = ee
x+C = C1 · e

ex ,

for some constant C1. To determine C1, we insert x = 0. The RHS is C1 ·e
e0 = C1 ·e

1 =
C1 · e. On the other hand, inserting x = 0 into the EGF gives the LHS as Q(0) = q0.

But q0 = 1: one must define q0 = 1 for (0.17) to be correct, since if we set n = 1 then

(0.17) says that q1 = q0, and q1 = 1 since there is always exactly one way to partition a

set into one part.

Hence, 1 = C1 · e, so C1 = e−1 and Q(x) = e−1ee
x

= ee
x−1, v.s.v.


