
First Lecture: 21/3

The first part of the course is concerned with what is often called Enumerative Com-

binatorics which, informally, is the art of counting. In general terms one is interested
in “clever” means of counting the sizes of finite sets, or at least estimating them - one
is usually dealing with large sets, or a sequence (An)

∞

n=1
of sets and then interested in

estimating |An| as n → ∞.
Two very basic principles underlie a very common method of reasoning:

Addition Principle. Let A and B be two finite, disjoint sets (i.e.: A ∩ B = φ). Then

|A ∪B| = |A|+ |B|. (1.1)

More generally, if A1, A2, . . . , Ak are finite, pairwise disjoint sets, i.e.: Ai ∩ Aj = φ

for all i 6= j, then
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|Ai|. (1.2)

Recall that the Cartesian product of two sets A and B is defined and denoted as

A×B = {(a, b) : a ∈ A, b ∈ B}. (1.3)

Multiplication Principle. Let A and B be two finite sets. Then

|A×B| = |A| × |B|. (1.4)

The above two principles can be reformulated in various ways, each of which provides
its own insights. One viewpoint which is particularly useful for counting problems is
the following:

Addition Principle (2nd formulation). Let A and B be two finite, disjoint sets. The

number of ways to choose an element from either A or B is |A|+ |B|.

Multiplication Principle (2nd formulation). Let A and B be two finite, disjoint sets.

The number of ways to choose both an element from A and an element from B is

|A| × |B|.

Example 1.1. Let A and B be any two sets. One denotes by BA the set of all pos-
sible functions from A to B, i.e.:

BA = {f | f : A → B is a function}. (1.5)

Now suppose |A| = m and |B| = n. Then |BA| = nm (which also explains the nota-
tion). For if A = {a1, a2, . . . , am} then a function is given by an m-tuple
(f(a1), f(a2), . . . , f(am)), which can be an arbitrary m-tuple of elements of B, i.e.:
an arbitrary element of the m-fold Cartesian product of B with itself (usually denoted
Bm). By the multiplication principle, this product has size |B|m = nm, v.s.v.

Recall that a function f : A → B is said to be injective if f(a1) 6= f(a2) whenever
a1 6= a2 are distinct elements of A.
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Example 1.2. Let us take Example 1 a step further and ask for the number of injective
functions from A to B. Clearly the number of such functions is zero if m > n.1 Oth-
erwise, such a function is once again given by an m-tuple (f(a1), f(a2), . . . , f(am)),
but now the coordinates must be distinct elements of B. To determine the number of
possibilities we reason as for the multiplication principle. There are |B| = n choices
for the first coordinate. Now one element of B is used up, so there are n − 1 choices
for the second coordinate. Then n − 2 choices for the third coordinate and so on, until
finally there are n−m+ 1 choices for the m:th coordinate. We must make a choice of
every coordinate to determine the function f , so the multiplication principle applies.

We have proven that the number of injective functions from an m-element set to an
n-element set is given by

P (n, m) = n(n− 1)(n− 2) . . . (n−m+ 1) =
m
∏

i=1

(n− i+ 1). (1.6)

Note in particular that P (n, n) = n!. As a special case, let A = B. An injective

function from a finite set to itself is also surjective2 and hence bijective. A bijection
from a set to itself is usually termed a permutation of the set. Hence, a corollary to
Example 1.2 is the following

Proposition 1.3. Let A be a finite set with n elements. The number of permutations of

A is P (nn) = n!.

Notation. The default choice of an n-element set is {1, 2, . . . , n}. One denotes by
Sn the set of all permutations of this set. It is called the symmetric group of order n,
which refers to the fact that this set has the algebraic structure of a group. We will not
say more on this for the moment, however (as I am not going to assume everyone knows
what a “group” is). For now, it suffices to know the notation and terminology.

Note that we may describe the quantity P (n, m) as the number of ways to choose
m distinct elements from an n-element set, where the order in which the m elements
are chosen is important.

We let C(n, m) denote the corresponding quantity where the order of choice is NOT
important, hence where it only matters which m elements are chosen. It is easy to see
that

C(n, m) =
P (n, m)

m!
, (1.7)

since for every choice of m elements there are m! ways to order (i.e.: permute) them.

Notation. A more common notation for C(n, m) is
(

n

m

)

. In words, “n choose m”
(på svenska “n över m”).

1This is a special case of the so-called Pigeonhole principle, also called the Dirichlet box principle,

which we will return to in Lecture xx.
2A function f : A → B is said to be surjective if, for each b ∈ B there is at least one a ∈ A such that

f(a) = b. Note by the way that an injective function on an infinite set need not be surjective (think of an

example !)
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Proposition 1.4.
(

n

m

)

=
n!

m!(n−m)!
(1.8)

Proof. We already know that
(

n

m

)

=
P (n, m)

m!
=

n(n− 1) . . . (n−m+ 1)

m!
(1.9)

Now simply multiply the last expression above and below by (n−m)! and note that the
numerator then becomes n!. �

Note an immediate and useful consequence of formula (1.8):

Proposition 1.5.
(

n

m

)

=

(

n

n−m

)

. (1.10)

Proof. This follows immediately from the symmetry in the denominator of (1.8). An-
other way to understand (1.10) is to realise that the number of ways to choose m ele-
ments from n is the same as the number of ways to reject n−m elements. �

Many counting problems involve use of both the addition and multiplication princi-
ples. We close this lecture with a typical example. To understand the example you need
to know that a “stryktipsrad” involves a guess of the outcomes of each of 13 football
matches. There are 3 possible outcomes for each match: 1, X or 2.

Example 1.6. Let us compute the number of ways to fill in a stryktipsrad such that
one gets at least 10 results right. One imagines the results of all 13 games being known
to some superior being who can see into the future. Let A10, A11, A12, A13 denote,
respectively, the number of ways to fill in the tipskupong so that one gets 10, 11, 12, 13
correct. Then we are interested in the size of the union of these sets. Note that the sets
are pairwise disjoint (by definition) so, by the addition principle,

|A10 ∪ A11 ∪ A12 ∪ A13| = |A10|+ |A11|+ |A12|+ |A13|. (1.11)

Let us compute the size of A10 - the others are handled similarly. There are 13 results
and 10 of these are correctly guessed. There are

(

13

10

)

possible choices of the 10 correctly
guessed results. This leaves 3 results which were incorrectly guessed and, for each of
these, there are 2 ways to guess incorrectly. Now the multiplication principle applies,
since we have to guess the results of all 13 matches. Hence,

|A10| =

(

13

10

)

× 23. (1.12)

Similarly,

|A11| =

(

13

11

)

× 22, |A12| =

(

13

12

)

× 21, |A13| =

(

13

13

)

× 20. (1.13)
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Substituting into (1.11) and using (1.10) to simplify, we find that

|A10 ∪ A11 ∪ A12 ∪ A13| =

=

(

13

3

)

× 23 +

(

13

2

)

× 22 +

(

13

1

)

× 21 +

(

13

0

)

× 20 =

=

(

13× 12× 11

1× 2× 3

)

× 8 +

(

13× 12

1× 2

)

× 4 + 13× 2 + 1× 1 =

= 2288 + 312 + 26 + 1 = 2627.

So there are 2627 different ways to get at least 10 results right. Note that the total
number of ways to fill in the tipskupong is 313, by the multiplication principle, since
there are 3 ways to fill in each row. Hence, the probability of getting at least 10 results
right (if you just guess totally at random) is 2627

313
≈ 1

607
. We remark that the betting

companies usually pay out to everyone who gets at least 10 result correct. However, the
payout is usually much less than “607 gånger pengarna”, which reflects two salient facts:
(i) they want to make a profit (ii) the punters are usually people with some knowledge
of football, they are not guessing randomly.


