
Tenth Lecture: 25/4

Definition 10.1. Let A ⊆ N0. The characteristic function of A is the function χA :
N0 → {0, 1} defined by

χA(n) =

{

1, if n ∈ A,

0, if n 6∈ A.

Definition 10.2. Let A ⊆ N0. The generating function of the set A , denoted GA(x), is

defined to be the generating function of the sequence (χA(n))
∞
n=0. In other words,

GA(x) =
∑

n∈A

xn. (10.1)

Note that, if A is an infinite set, then the series converges when |x| < 1.

Proof of Theorem 9.12. The proof is by contradiction. Suppose there existed a set

A ⊆ N0 such that r2(A, n) = t > 0 for all n ≥ n0. Let G(x) = GA(x) be the

generating function of A, as defined in (10.1). The generating function connects to the

representation function as follows:

[G(x)]2 +G(x2) = 2 ·
∞
∑

n=0

r2(A, n) x
n. (10.2)

To see why this is so, observe that in the first term on the LHS, every representation of

the form n = a1 + a2 is counted twice when a1 6= a2 and once when a1 = a2. The

second term on the LHS counts representations n = a + a exactly once. Hence, in

total on the LHS, every representation of an integer n as a sum of two elements of A is

counted exactly twice, which is what the RHS says explicitly.

Now we are supposing that r2(A, n) = t for all n ≥ n0. Then (10.2) can be written

as

[G(x)]2 +G(x2) =

n0−1
∑

n=0

r2(A, n) x
n + 2t ·

∞
∑

n=n0

xn. (10.3)

The first sum on the RHS of (10.3) is some polynomial in x, call it P (x). The second

sum is a geometric series, so has a simple formula. We thus find that

[G(x)]2 +G(x2) = P (x) + 2t ·
xn0

1− x
. (10.4)

We obtain a contradiction by seeing what happens as x → −1+. First consider the

LHS of (10.4). The term G(x2) converges towards G((−1)2) = G(1) =
∑

n∈A
1n =

∑

n∈A
1 = |A| = +∞, since A must at the very least be an infinite set if it is to be a

basis of finite order. The term [G(x)]2 is always non-negative, simply because it’s the

square of something. Hence, the LHS of (10.4) tends to +∞ as x → −1+. But the

RHS heads towards some finite value, namely P (−1) + (−1)n0 · t. This contradiction

completes the proof. �
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SPECIAL TOPIC 2: RAMSEY NUMBERS

Example 10.3. Show that, in any group of 6 people, there must either be three mutual

friends or three mutual strangers.

Solution: The above is the popular formulation of the basic observation of Ramsey

theory. Here “friendship” stands for any symmetric relation between elements of a set.

So the more abstract formulation of the problem is to show that, given any symmetric

relation on a set of 6 elements, there must exist either a subset of three elements all of

which are related, or a subset of three elements none of which are related.

The idea for the solution is a prototype of the method we’ll use to prove Theorem

10.6 below. Isolate one of the six people, call him P . There are 5 = (2 + 2) + 1 other

people present, which leaves two possibilities:

CASE 1: P has at least three friends. If none of P ’s friends know one another, then

they form a group of at least three mutual strangers and we’re done. Otherwise, some

two of P ’s friends know each other, in which case these two together with P form a

group of three mutual friends.

CASE 2: There are at least three strangers to P . If all these guys know one another, then

they form a group of at least three mutual friends, and we’re done. Otherwise, some

pair of them are strangers, in which case these two, together with P , form a group of

three mutual strangers. This completes the solution.

Remark 10.4. It is possible for the friendship relations in a group of 5 people to be

such that there exists neither a subset of three mutual friends nor a subset of three mu-

tual strangers. Indeed, there is only one way to make this work, up to a permutation of

the 5 people. It is illustrated in Figure 10.1 on the homepage.

We are now ready to define Ramsey numbers, slightly informally in the language of

friends and strangers. A more formal definition will be given in the next lecture.

Definition 10.5. Let k, l ∈ N≥2. The Ramsey number R(k, l) is the smallest n ∈ N

such that, in any group of n people, there must exist either a subset of k mutual friends

or a subset of l mutual strangers.

From Example 10.3 and Remark 10.4 it follows that R(3, 3) = 6. The fundamental

result proven by Frank Ramsey in the 1920s, whose proof follows next time, is the

following:

Theorem 10.6. The numbers R(k, l) all exist, i.e.: are finite. In fact, we have

R(k, l) = R(l, k), (10.5)

R(k, 2) = R(2, k) = k, (10.6)

and, in general,

R(k, l) ≤ R(k − 1, l) +R(k, l − 1). (10.7)


