Tenth Lecture: 25/4

Definition 10.1. Let A C Ny. The characteristic function of A is the function Y 4 :
Ny — {0, 1} defined by

1, ifne A,
Xan) = { 0, ifn¢ A.

Definition 10.2. Let A C N. The generating function of the set A , denoted G 4(z), is
defined to be the generating function of the sequence (x4 (n))5° . In other words,

Ga(x) =) a" (10.1)
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Note that, if A is an infinite set, then the series converges when |z| < 1.

Proof of Theorem 9.12. The proof is by contradiction. Suppose there existed a set
A C Ny such that m(A, n) =t > 0 forall n > ng. Let G(z) = G4(z) be the
generating function of A, as defined in (10.1). The generating function connects to the
representation function as follows:

[G(2))?+G(x*) =2 i ro(A, n) ™. (10.2)

To see why this is so, observe that in the first term on the LHS, every representation of
the form n = a; + ay is counted twice when a; # as and once when a; = a,. The
second term on the LHS counts representations n = a + a exactly once. Hence, in
total on the LHS, every representation of an integer n as a sum of two elements of A is
counted exactly twice, which is what the RHS says explicitly.

Now we are supposing that ro( A, n) = ¢ for all n > ny. Then (10.2) can be written
as
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The first sum on the RHS of (10.3) is some polynomial in z, call it P(x). The second
sum is a geometric series, so has a simple formula. We thus find that
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[G(2)]* + G(2*) = P(x) + 2t - (10.4)
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We obtain a contradiction by seeing what happens as z — —17. First consider the
LHS of (10.4). The term G(z?) converges towards G((—1)%) = G(1) = >, 41" =
Y neal = |A| = +o0, since A must at the very least be an infinite set if it is to be a
basis of finite order. The term [G(z)]? is always non-negative, simply because it’s the
square of something. Hence, the LHS of (10.4) tends to +oc as + — —17. But the
RHS heads towards some finite value, namely P(—1) + (—1)" - t. This contradiction
completes the proof. U



SPECIAL TOPIC 2: RAMSEY NUMBERS

Example 10.3. Show that, in any group of 6 people, there must either be three mutual
friends or three mutual strangers.

Solution: The above is the popular formulation of the basic observation of Ramsey
theory. Here “friendship” stands for any symmetric relation between elements of a set.
So the more abstract formulation of the problem is to show that, given any symmetric
relation on a set of 6 elements, there must exist either a subset of three elements all of
which are related, or a subset of three elements none of which are related.

The idea for the solution is a prototype of the method we’ll use to prove Theorem
10.6 below. Isolate one of the six people, call him P. There are 5 = (2 + 2) + 1 other
people present, which leaves two possibilities:

CASE 1: P has at least three friends. If none of P’s friends know one another, then
they form a group of at least three mutual strangers and we’re done. Otherwise, some
two of P’s friends know each other, in which case these two together with P form a
group of three mutual friends.

CASE 2: There are at least three strangers to P. If all these guys know one another, then
they form a group of at least three mutual friends, and we’re done. Otherwise, some
pair of them are strangers, in which case these two, together with P, form a group of
three mutual strangers. This completes the solution.

Remark 10.4. It is possible for the friendship relations in a group of 5 people to be
such that there exists neither a subset of three mutual friends nor a subset of three mu-
tual strangers. Indeed, there is only one way to make this work, up to a permutation of
the 5 people. It is illustrated in Figure 10.1 on the homepage.

We are now ready to define Ramsey numbers, slightly informally in the language of
friends and strangers. A more formal definition will be given in the next lecture.

Definition 10.5. Let k,! € Ns,. The Ramsey number R(k, [) is the smallest n € N
such that, in any group of n people, there must exist either a subset of £ mutual friends
or a subset of [ mutual strangers.

From Example 10.3 and Remark 10.4 it follows that R(3, 3) = 6. The fundamental
result proven by Frank Ramsey in the 1920s, whose proof follows next time, is the
following:

Theorem 10.6. The numbers R(k, 1) all exist, i.e.: are finite. In fact, we have
R(k, 1) = R(l, k), (10.5)
R(k, 2) = R(2, k) =k, (10.6)

and, in general,

R(k, 1) < R(k—1,1) + R(k, L — 1). (10.7)



