
Twelveth Lecture: 28/4

Proof of Theorem 11.2. Let k ≥ 3 be given and let n be an integer satisfying (11.2).

We must prove that there exists an edge 2-coloring of Kn in which no Kk subgraph is

monochromatic. The idea for the proof is to employ a probabilistic argument: instead

of trying to describe such a coloring explicitly, we instead color the edges independently

and uniformly at random and prove that, with positive probability, no Kk subgraph will

be monochromatic.

To be precise, for each of the
(

n
2

)

edges of Kn, toss a fair coin and color the edge

red if the coin shows heads, blue otherwise. Do this independently for all the edges.

Hence, every edge is colored red (resp. blue) with probability 1/2, independently of all

other edges. There are a total of
(

n
k

)

Kk subgraphs in Kn. Order them arbitrarily and,

for each i = 1, . . . ,
(

n
k

)

, let Ai be the event that the i:th subgraph is monochromatic.

Clearly, for each i,

Ai = Ai, r ⊔ Ai, b (⊔ denotes disjoint union/mutual exclusivity),

where Ai, r (resp. Ai, b) is the event that the i:th subgraph is entirely red (resp. blue).

Thus, by (11.4),

P(Ai) = P(Ai, r) + P(Ai, b).

Consider Ai, r. We are dealing here with a fixed Kk subgraph. This graph has
(

k
2

)

edges,

order them arbitrarily. Let Ai, r, j be the event that the j:th edge of this graph is colored

red, for j = 1, . . . ,
(

k
2

)

. Then

Ai, r =

(k
2
)

∧

j=1

Ai, r, j.

But P(Ai, r, j) = 1

2
for each j, and the events Ai, r, j are independent for different j’s.

Hence, by (11.9),

P(Ai, r) =

(

1

2

)(k
2
)
= 2−(

k

2
).

Clearly, P(Ai, b) = P(Ai, r) and hence

P(Ai) = 2× 2−(
k

2
) = 21−(

k

2
).

Let X be the event that some Kk subgraph is monochromatic. Then

X =

(n
k
)

∨

i=1

Ai

and so, by the Union Bound (11.7),

P(X) ≤

(n
k
)

∑

i=1

P(Ai) =

(

n

k

)

21−(
k

2
).

By assumption, (11.2) holds, thus P(X) < 1, equivalently P(¬X) > 0. In other words,

when we color the edges of Kn independently and uniformly at random, then there is a

strictly positive probability of obtainining no monochromatic Kk subgraph.
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But what does this mean ? Well, there are 2(
n

2
) possible edge 2-colorings of Kn.

When we color the edges independently and uniformly at random, each of these 2(
n

2
)

possible colorings arises with equal probability, in other words any particular coloring

arises with probability 2−(
n

2
). Hence, if there are a total of t colorings which give rise

to no monochromatic Kk subgraphs, then

P(¬X) = t · 2−(
n

2
).

So P(¬X) > 0 ⇔ t > 0 ⇔ t ≥ 1, since t is an integer. So we’ve proven that there

is at least one edge 2-coloring of Kn which yields no monochromatic Kk subgraphs,

v.s.v. �

Remark 12.1. From the proof of Corollary 11.3 we can see that, as k grows, if

n = ⌊2k/2⌋ then the expression
(

n
k

)

21−(
k

2
) goes to zero very rapidly. Hence, the proof of

Theorem 11.2 given above actually implies that, for reasonably large k and n = ⌊2k/2⌋,

a random edge 2-coloring of Kn will “work”, i.e.: will yield no monochromatic Kk

subgraphs, with extremely high probability. Hence, as a practical issue it is very easy to

produce a coloring that works, simply by trial and error. However, it remains a (proba-

bly impossible !) open problem to describe explicitly any coloring that works.

Part 2: Graph Theory

The basic defintion of graph was already given in Definition 11.7. We’ll get started in

earnest with this topic next day, but let me finish today by just noting some terminology

associated with standard variations on the basic definition:

Terminology 12.2. A digraph is a pair G = (V, E), where E is now a set of or-

dered pairs of elements of V . One can think of a digraph as an ordinary graph but with

an arrow on each edge, i.e.: each edge has a direction from one vertex to the other. We

will see an example next day when we discuss the Keycode Problem.

In a multigraph G = (V, E), the set E is allowed to contain repititions. In other

words, one allows there to be multiple edges between the same pair of vertices. The

Bridges of Königsberg problem, to be discussed next day, provides a typical example.

A loop is an edge from a vertex to itself. Hence if G = (V, E) and we want to allow

loops, then the set E should be allowed to contain pairs {v, v}. We will also encounter

a graph with loops in the Keycode Problem.

In some textbooks, the word “graph” does not have the same meaning as in our Def-

inition 11.7, but could incorporate one or more of the variations digraph, multigraph,

graph with loops. Indeed, we will also reserve the right to abuse language in the coming

lectures and trust the reader to understand from the context at hand what we mean by
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the term “graph”. In such cases, it is common to speak of what we termed a “graph” in

Definition 11.7 as a simple, loopless graph.

Definition 12.3. Let G = (V, E) be a simple, loopless graph with |V | = n and suppose

the vertices have been labelled 1, 2, . . . , n. The adjacency matrix of G is the n × n
matrix A = AG = (ai, j) such that

ai, j =

{

1, if {i, j} ∈ E,
0, if {i, j} 6∈ E.

The definition can be extended to the various variations discussed above, noting that:

(i) In a multigraph, ai, j would denote the number of edges between vertices i and j.

(ii) In a digraph, the adjacency matrix need not be symmetric, i.e.: ai, j 6= aj, i is possi-

ble.

(ii) If ai, i > 0 it means there is at least one loop at vertex i.


