
Fourteenth Lecture: 4/5

Paths and cycles. We start by introducing a bunch of notation and terminology.

Definitions 14.1. A path or walk in a graph G = (V, E) is a sequence of vertices

v1v2 . . . vk such that {vi, vi+1} ∈ E for each i = 1, . . . , k − 1.

If vk = v1 then the path is said to be closed and is then called a cycle or circuit.

If either (i) vi 6= vj for all i 6= j or (ii) the path is closed but vi 6= vj for all 1 ≤ i 6=
j ≤ k − 1, then the path is said to be simple. Note that it is generally not sufficient for

a path to be simple that it not go over the same edge twice - it must not even go through

the same vertex twice, except in the case of the start/endpoint of a closed path.

The length of a path is the number of edges in it. Thus, a path v1v2 . . . vk has length

k − 1.

Definitions 14.2. Let G = (V, E) and v1, v2 ∈ V . The (graph) distance between

v1 and v2 is the minimum length of a path between them. One writes d(v1, v2). If there

is no path between v1 and v2, i.e.: if v1 and v2 lie in different connected components of

G, then one sets d(v1, v2) := +∞. It is easy to see that graph distance is a metric, i.e.:

it satisfies the following three properties:

(i) d(v1, v2) = 0 if and only if v1 = v2.

(ii) Symmetry: d(v1, v2) = d(v2, v1).
(iii) Triangle inequality: d(v1, v3) ≤ d(v1, v2) + d(v2, v3).

The diameter of a graph G, denoted diam(G), is the maximum distance between a

pair of vertices, i.e.: diam(G) = maxv1, v2∈V d(v1, v2). Note that diam(G) < +∞ if

and only if G is connected.

One of the oldest problems in the subject of graph theory is the so-called Bridges of

Königsberg problem, which asks whether it would have been possible, in 17th century

Königsberg, to take a walk round the city such that one crossed every bridge exactly

once - see Figure 14.1. Consideration of this problem lead to the following notions:

Definition 14.3. Let G = (V, E) be a (multi)graph. A path (resp. cycle) in G is

called an Euler path (resp. cycle) if it uses every edge exactly once.

The Königsberg problem can be abstracted and reduces to asking whether the multi-

graph in Figure 14.2 contains an Euler path/cycle ? This graph is small enough that it is

possible to check this by brute force - there are 7 edges hence, a priori, 27 ·7! = 645, 120
possible ways to order and direct the 7 edges. One finds that no Euler path exists. How-

ever, for larger graphs, such a brute force approach will evidently become infeasible.

So we are left with a classic Decision and Search Problem: is there a simple rule for

determining whether or not a graph posseses an Euler path/cycle and, if it does, is there

a simple procedure for constructing one ?
1



2

What’s particularly nice about Euler paths is that here we have an instance where

both the decision and search problems have a simple and elegant solution. Euler himself

proved the following theorem:

Theorem 14.4. Let G = (V, E) be a connected (multi)graph. Then

(i) G possesses an Euler path between distinct vertices v and w if and only if deg(v)
and deg(w) are both odd, and every other vertex has even degree. In particular, G

possesess some non-closed Euler path if and only if there are exactly two vertices of

odd degree.

(ii) G possesses an Euler cycle if and only if every vertex has even degree.

Note that, in Figure 14.2, the degrees of the vertices are 3, 3, 3, 5. Hence, no Euler

path exists.

Proof. It is easy to see that the conditions imposed on G are necessary for existence of

Euler paths and cycles. An Euler path never uses the same edge twice. This means that,

whenever the path enters a vertex along an edge, it must exit along a different edge.

Hence, every visit to a vertex uses up two of the edges incident with that vertex. The

only exceptions to this rule are (i) when we leave the starting vertex for the first time

(ii) when we enter the destination vertex for the last time. Hence, if these are distinct

vertices, they must both have odd degree, while if they are the same vertex (i.e.: if the

path is a cycle), then its degree must be even. Every other vertex must have even degree.

This proves necessity.

The proof of sufficiency is constructive, i.e.: it yields an algorithm for actually find-

ing an Euler path/cycle when one exists, thus solving the search problem. First, let me

describe the proof in case (ii), when every vertex has even degree. I will at the end

describe what modifications need to be made to the argument in case (i), when there are

two vertices of odd degree.

Formally, one can proceed by induction on the number of edges in G. If every vertex

has even degree, then G must have at least two edges. If there are two edges, then the

only possibility is a graph with two vertices and a pair of edges between them. Clearly

this graph has an Euler cycle - just go forward along one edge and back along the other.

This takes care of the base case.

Assume that Theorem 14.4(ii) holds for all graphs on at most n ≥ 2 edges, and let

G be a graph on n + 1 edges in which every vertex has even degree. Pick any vertex v

and, starting from v, perform a “random walk” along the graph, taking care not to use

the same edge twice. Because every vertex has even degree, the walk can’t get stuck at

any other vertex w - each time we visit w along an edge, there must be another edge to

pair it off with, along which we can exit again. Hence, the only way we can get stuck is

if we arrive back at v and have used up all the edges through v. If this happens, remove

from G all the edges along the walk and let G′ be the remaining subgraph of G. In

G′ it will still be the case that every vertex has even degree. Note that G′ may not be

connected, but even so every connected component of it must satisfy the even-degree

condition. Hence, by the induction hypothesis, every component of G′ possesses an Eu-

ler cycle. Finally, then, one obtains an Euler cycle in G by inserting the Euler cycles of

G′ as detours into the walk we took earlier - more precisely, perform the original walk,



3

but as soon as one encounters a vertex which is contained in one of the Euler cycles

constructed in G′, then insert that cycle before continuing with the walk. Note that the

inductive nature of the argument means that there could be several levels of embedded

detours (i.e.: we may end up making detours of detours of detours etc), but since G has

a finite number of edges, we must ultimately get a cycle which uses every edge of G

exactly once, v.s.v.

In the case when G possesses exactly two vertices of odd degree, then the only modifi-

cation required to the above procedure is to make sure that one starts the initial random

walk at one of the two odd-degree vertices. Then, by the same argument as before, the

only place one can get stuck is at the other odd-degree vertex. If this happens, when

the walk is removed from G, the remaining subgraph G′ will have all its vertices of

even degree. Hence G′ possesses an Euler cycle, and this can be inserted as a detour

in the original walk, thus yielding an Euler path in G between the two odd-degree ver-

tices. �

The above argument immediately yields an algorithm for finding an Euler path or

cycle in a graph which possesses one. It is an example of a so-called greedy algorithm,

in that it proceeds by adding edges in a headlong forward rush (the random walk), for as

long as it can until it is forced to backtrack and insert detours. Here is a quick synopsis

of the algorithm. In the first case, we assume every vertex has even degree and in the

second that there are exactly two vertices of odd degree.

Euler cycle finding algorithm.

STEP 1: Choose a starting vertex v at random.

STEP 2: Start walking from v. Make sure you don’t use the same edge twice. Continue

until you return to v and have used up every edge through it.

STEP 3: Remove from G all the edges you’ve walked along and let G′ be the remaining

subgraph. For each connected component of G′, go to Step 1.

STEP 4: Finally, when there are no edges left, glue together the hierarchy of walks so

as to obtain an Euler cycle in the original graph G.

Euler path finding algorithm.

STEP 1: Locate the two vertices of odd degree. Pick one of them at random.

STEP 2: Start walking from the chosen vertex. Make sure you don’t use the same edge

twice. Continue until you get stuck - this can only happen when you visit the other

odd-degree vertex and have used up every edge through it.

STEP 3: Remove from G all the edges you’ve walked along and let G′ be the remaining

subgraph. For each connected component of G′, perform the Euler cycle finding algo-

rithm.

STEP 4: Glue together the hierarchy of walks so as to obtain an Euler path between the

two odd-degree vertices in the original graph G.



4

Finally for today, we record an extension of Theorem 14.4 to digraphs. This is what

we will need to solve the Keycode Problem next time. First, an extension of Definition

13.11 to digraphs:

Definition 14.5. Let G = (V, E) be a digraph and v ∈ V . The outdegree of v is

the number of edges exiting v, i.e.:

outdeg(v) = #{w ∈ V : (v, w) ∈ E}. (14.1)

The indegree of v is the number of edges entering v, i.e.:

indeg(v) = #{w ∈ V : (w, v) ∈ E}. (14.2)

Theorem 14.6. (Euler’s theorem for digraphs) Let G = (V, E) be a di(multi)graph.

Then

(i) G possesses an Euler path from a vertex v to a different vertex w if and only if

(a) outdeg(v) = indeg(v) + 1,

(b) indeg(w) = outdeg(w) + 1,

(c) for all other vertices x, outdeg(x) = indeg(x).

(ii) G possesses an Euler cycle if and only if, for every every vertex x, outdeg(x) =
indeg(x).

The theorem is proven in exactly the same way as Theorem 14.4 and yields exactly

the same greedy path/cycle-finding algorithm. The reader is left to meditate on this

him/herself.


