
Fifteenth Lecture: 9/5

De Bruijn graphs. Let A be a finite set and k a positive integer. The elements of the

k-fold Cartesian product Ak can be identified with strings a1a2 . . . ak, ai ∈ A. In this

situation it is common to speak of A as an alphabet and of the strings as words of length

k in the alphabet A.

A digraph G = (V, E) is called a De Bruijn graph if there is a finite alphabet A and

a positive integer k such that

(i) V consists of all words of length k in the alphabet A,

(ii) there is a directed edge from the word a1a2 . . . ak to the word a′1a
′

2 . . . a
′

k if and

only if a′i = ai+1 for all i = 1, 2, . . . , k − 1.

Note that (ii) implies that there will be a loop at each vertex of the form aa . . . a, a ∈ A.

If we ignore the loops then, for a vertex v = a1a2 . . . ak one has

Outdeg(v) = Indeg(v) =

{

|A| − 1, if a1 = a2 = · · · = ak,
|A|, otherwise.

Hence, from Theorem 14.6(ii) it follows that a De Bruijn graph always possesses an

Euler cycle. Note that this applies even if we include the loops - we can imagine per-

forming an Euler cycle in the loopless graph and executing each loop the first time we

visit the corresponding vertex.

Example 15.1. (The Keycode Problem) In Sweden, apartment buildings are usually

equipped with electronic door locks and to get into the building one must punch in the

correct sequence of four decimal digits. Usually it is the case that it suffices to punch in

the correct four digits consecutively. So, for example, if the code is 1234 and you begin

by erroneously punching 121, then it suffices to continue with 234 to gain entrance, you

don’t need to “start all over” and punch in the 1 again. This feature means that a robber,

seeking to gain entrance but who has no clue what the correct code is, does not in the

worst case (for him !) need to punch in 4 × 104 = 40, 000 digits to be absolutely sure

of gaining entrance. Indeed, a sequence of just 104 + 3 = 10, 003 digits contains 104

different codes, so the question arises whether there exists such a sequence of 104 + 3
digits which includes every 4-digit code exactly once (and thus makes the robber’s job

easier by a factor of 4) ?

The answer is yes ! For consider the De Bruijn graph whose nodes are words of length

3 in the alphabet {0, 1, . . . , 9}. Every directed edge in this graph corresponds to a 4-

digit code and it is easy to see that an Euler cycle, including the 10 loops, corresponds

to a sequence of 104 + 3 digits which includes every 4-digit code exactly once.

We can “see” how this works by taking a simpler example, say A = {0, 1} and

k = 2. The De Bruijn graph is shown in Figure 15.1(i). It contains |A|k = 22 = 4
nodes. The sequence of edges in an Euler cycle (found via the usual greedy search) is

shown in Figure 15.1(ii). The corresponding sequence of |A|k+1 + |A| = 23 + 2 = 10
binary digits is

0001110100
1

2

and one may check that this includes each of the 23 = 8 three-digit binary words exactly

once.

Definition 15.2. A path in a graph G = (V, E) is called a Hamilton path if it visits

every vertex exactly once. A path which visits every vertex exactly once and then re-

turns via an edge to the starting vertex is called a Hamilton cycle.

The problem of deciding whether or not a graph contains a Hamilton path or cycle is

known to be much more difficult than the corresponding problem for Euler paths/cycles,

which we resolved completely in the previous lecture. Indeed, it is one of the oldest

known examples of a so-called NP-complete problem. It is beyond the scope of this

course to explain what this means, but it is a central notion in the subject of complexity

theory (of algorithms) and one reason why the subject of graph theory is so important

for theoretical computer science is that it is a rich source of concrete NP-complete

problems - we will be seeing further examples in the coming lectures. Philosophically,

large classes of “difficult” algorithmic problems can be encoded as problems in graph

theory, and the decision problem for Hamilton paths/cycles is a classic example.

A common way of popularising the decision problem for Hamilton paths/cycles is to

consider it as a special case of the Travelling Salesman Problem. Here one thinks of the

nodes in a graph as cities and the edges as representing those pairs of cities for which

there exists a flight connection. The travelling salesman wishes to visit every city but

has no reason to visit a place more than once, if he can avoid it. Whether or not he can

achieve his goal is equivalent to asking if the graph has a Hamilton path and, assuming

he’d like to end up back home where he started, whether it has a Hamilton cycle1.

Intuitively, one can see why the decision problem for Hamilton paths is harder than

the corresponding problem for Euler paths, by considering that a Hamilton path in an

n-vertex graph uses n − 1 edges, while such a graph can in principle have anything

from 0 to
n(n−1)

2
edges. Thus, for most graphs, a Hamilton path would use only a small

fraction of the total number of available edges, though not a negligible fraction, we still

have to use n−1 edges after all2. In contrast, an Euler path must use every edge exactly

once. This is a very stringent requirement, which leads to a very sharp (and restrictive

!) characterisation of those graphs for which it is possible.

This intuition would, however, naturally lead one to expect that, the denser the graph,

by which we mean the greater the quotient |E|/
(

n

2

)

, the greater the likelihood that

Hamilton paths or cycles exist. Indeed, in the extreme case, consider Kn. This pos-

sesses Euler cycles if and only if n ≥ 3 is odd, by Theorem 14.4(ii). On the other hand,

1In the full TSP, each edge e comes equipped with a non-negative weight w(e) ∈ R+, representing

the cost of the flight between those two cities. The problem is then to find a path in the graph which

visits every city at least once and for which the total cost is minimised. Our special case above is to set

w(e) = 1 for every e and ask if there exists a path of total cost |V | − 1, or a cycle of total cost |V |. We

will be returning to weighted graphs from Lecture 17 onwards.
2A more rigorous way of developing this intuition is to firstly imagine the graph being chosen ran-

domly by inserting each of the
(

n

2

)

possible edges with probability 1/2, independent of all other edges,

and then to search for a Hamilton path by taking a “random walk” from a randomly chosen starting

vertex. It’s beyond the scope of the course to delve into this further.

3

for each n ≥ 3, Kn possesses n!
n
= (n − 1)! Hamilton cycles, since every permutation

of the n vertices corresponds to a Hamilton path and there are n possible starting points

for a given cycle.

However, high density on its own is not enough to guarantee Hamilton paths. Con-

sider, for example, a graph which is the union of Kn−1 and an isolated vertex. It contains
n−2
n−1

of all possible edges but obviously no Hamilton path. This might suggest that, in

addition to having lots of edges we would like them to be “spread evenly around”. There

is, in fact, a theorem which makes this precise:

Theorem 15.3. (Dirac’s Theorem) Let G = (V, E) be a graph with |V | = n > 2. If

deg(v) ≥ n/2 for every v ∈ V , then G possesses a Hamilton cycle.

Proof. The proof is by contradiction. Fix an n > 2 and suppose the theorem is false

for this value of n, in other words, suppose there is an n-vertex graph which contradicts

the theorem. Then there must be such a graph with the maximum possible number of

edges. Pick any such graph and call it G. Thus we’re assuming that

(i) deg(v) ≥ n/2 for every v ∈ V (G),
(ii) G possesses no Hamilton cycle,

(iii) adding any edge to G will create a Hamilton cycle.

We will have a contradiction if we can prove that G had a Hamilton cycle all along. We

start by using (iii). Pick a pair of vertices x, y such that the edge {x, y} is not in G.

Adding it must create a Hamilton cycle and we may assume any such cycle includes

the edge {x, y}, as otherwise it would already have been present in G. So we can pick

such a cycle and let x be the “first” and y the “last” vertex, i.e.: the cycle reads

v1 = x → v2 → v3 → · · · → y = vn → x.

Now define the subsets S and T of {1, 2, . . . , n− 1} as follows:

S = {i : {x, vi+1} ∈ E(G)},

T = {i : {vi, y} ∈ E(G)}.

Note that |S| = deg(x) and |T | = deg(y). Hence, |S| ≥ n/2 and |T | ≥ n/2. But

both are subsets of {1, 2, . . . , n− 1}, so |S ∪ T | ≤ n− 1. It follows that S ∩ T 6= φ.

Let i ∈ S ∩ T , so both {vi, y} and {x, vi+1} are edges in G. We can now construct a

Hamilton cycle in G as follows (see Figure 15.2):

v1 = x → v2 → · · · → vi → y = vn → vn−1 → · · · → vi+1 → x.

This is a contradiction, completing the proof. �

Remark 15.4. (i) The theorem doesn’t hold for n = 2, since K2 satisfies the require-

ment that every vertex has degree at least 2/2 = 1, but obviously it has no Hamilton

cycle (though it does have a Hamilton path).

(ii) Dirac’s theorem gives a sufficient condition for existence of a Hamilton cycle, but

it’s a million miles away from being a necessary one. For example, the cycle Cn is a

Hamilton cycle for every n ≥ 3, but doesn’t satisfy Dirac’s condition once n ≥ 5.

4

Paths and the adjacency matrix. Before leaving the subject of paths and cycles for a

while, I want to just mention a rather cute application of linear algebra in this area. We

quote it as a theorem:

Theorem 15.5. Let G = (V, E) be a graph on n labelled vertices 1, 2, . . . , n, let

A = AG be the corresponding n × n adjacency matrix and let k be a positive integer.

Let aki, j denote the (i, j):th entry of the matrix Ak. Then aki, j is the number of paths of

length k in G from vertex i to vertex j.

Proof. Simple, but a bit messy to write out and left to the interested reader as an exer-

cise. Basically it’s just a matter of unwinding the definition of matrix multiplication, as

applied to the adjacency matrix. �

Note that the adjacency matrix A is symmetric, hence diagonalisable. Therefore, the

theorem implies that computing the number of paths of a given length between a pair

of vertices essentially reduces to finding the eigenvalues of the adjacency matrix. For

digraphs, A is no longer symmetric, which makes the problem a bit trickier. Indeed, if

we allow multigraphs and loops, then A can be any n× n matrix whatsoever.

