
Eighteenth Lecture: 16/5

Theorem 18.1. Prim’s algorithm always produces a minimum spanning tree.

Proof. Let G = (V, E) be a connected, weighted graph on n vertices and let T be

a spanning tree for G produced by Prim’s algorithm. Let e1, e2, . . . , en−1 be the se-

quence of edges chosen by the algorithm in order. Let U be any other spanning tree

for G and let i be the smallest index such that ei is not an edge in U . We will show

that there is another spanning tree U∗ such that w(U∗) ≤ w(U) and U∗ contains each

of the edges e1, . . . , ei. Iterating this procedure at most n − 1 times will thus show

that w(T) ≤ w(U) and hence that T is a minimum spanning tree, since U was chosen

arbitrarily.

Now U contains each of the edges e1, . . . , ei−1 by assumption. Let S be the set

of vertices spanned by these edges. Let ei = {x, y}, where x ∈ S and y ∈ V \S -

Prim’s algorithm always chooses the next edge so that it covers a new vertex. Since U
spans G, there must be some simple path in U from x to y. Call this path Pxy. This

path starts at a vertex in S and ends at a vertex in V \S. Hence there must be a first

edge e : z → w along the path such that z ∈ S and w ∈ V \S. Now the edge e was

available to Prim’s algorithm at the i:th step but was not chosen ahead of ei. Since the

algorithm always chooses an edge of minimal weight amongst those available, we must

have w(e) ≥ w(ei). Let U∗ := (U ∪ {ei})\{e}. Thus w(U∗) ≤ w(U) and U∗ contains

all the edges e1, . . . , ei. So all that remains to be shown is that U∗ is a spanning tree

for G. Since U∗ has the same number of edges as the spanning tree U , it suffices to

show that it spans G, for then it will follow immediately from Theorem 17.4(iv) that it

contains no cycles.

So let v1, v2 ∈ V . Since U spans G, there is a unique simple path in U from v1 to v2.

Call it Pv1v2 . If this path doesn’t use the edge e then it is still present in U∗. So suppose

the path Pv1v2 does use the edge e. Let Cxy be the simple cycle formed by the path Pxy

above and the edge ei. Then we obtain a path in U∗ from v1 to v2 by

- following the path Pv1v2 until we hit the edge e,

- then replacing e by the rest of the cycle Cxy, traversed in the appropriate direction,

- finally continuing to y along the path Pv1v2 .

We’ve proven that U∗ contains a path between any pair of vertices of G, hence it spans

G, v.s.v. �

Remark 18.2. The proof that Kruskal’s algorithm also produces a MST is very similar

to this and is left as an exercise to the reader. See also Exercises 16.7.9 and 16.7.10 on

the homepage.

Definitions 18.3. Let G = (V, E) be a graph. A matching in G is a subset M ⊆ E
such that no two edges of M share a vertex. In other words, M is a subgraph of G in

which every vertex has degree zero or one. A vertex of degree one is said to be included

in the matching, or simply to be matched.

The size of a matching M is the number of edges in it, and is denoted |M |. If

|M | ≥ |M ′| for any other matching M ′, then M is said to be a maximum matching.

1

2

A matching is said to be perfect or complete if |M | = |V |/2, in other words, if every

vertex in G is matched.

Remark 18.4. Note the simple but useful observation that a graph cannot possess a

perfect matching if it has an odd number of vertices.

The Matching Problem asks for a procedure to determine a maximum matching in a

graph and thus, in particular, to decide if the graph has a perfect matching. The problem

makes most sense in the setting of bipartite graphs G = (X, Y, E). Among the myriad

interpretations of the problem in this setting, here are three of the most common ones:

A. X is a set of men and Y a set of women. An edge represents a pair such that each

regards the other as an “acceptable” spouse. Hence, a maximum matching represents an

optimal solution to the Marriage Problem of marrying off as many couples as possible.

B. X is a set of job seekers and Y a set of vacancies. An edge represents a job for

which the corresponding person is qualified. Hence, a maximum matching represents

an optimal solution to the Job Assignment Problem of getting jobs for as many people

as possible.

C. X is a set of high-school leavers and Y a set of university degree programs. An

edge represents a program which the corresponding student is both qualified for and

interested in. Hence, a maximum matching represents a way of getting the maximum

number of students into university.

Terminology 18.5. In a bipartite graph G = (X, Y, E), the size of any matching

cannot exceed min{|X|, |Y |}. In particular, there cannot exist a perfect matching if

|X| 6= |Y |. If |X| ≤ |Y | (resp. if |Y | ≤ |X|) and there exists a matching of size |X|
(resp. of size |Y |), then this matching is said to be perfect for X , or X-perfect (resp.

perfect for Y , or Y -perfect).

Definition 18.6. Let G = (V, E) be any graph and v ∈ V . The neighborhood of

v, denoted N(v), is the set of all vertices joined to v by an edge, i.e.:

N(v) = {w ∈ V : {v, w} ∈ E}.

More generally, if A ⊆ V , the neighborhood of A, denoted N(A), is the union of the

neighborhoods of its elements, i.e.: N(A) = ∪v∈AN(v).

Theorem 18.7. (Hall’s Marriage Theorem) Let G = (X, Y, E) be a bipartite graph.

Then there exists a perfect matching for X if and only if

|N(A)| ≥ |A| ∀ A ⊆ X. (18.1)

Note that (18.1) is called Hall’s condition. Before proving the theorem, we need to

introduce the central idea in the proof:

Definition 18.8. Let M be a matching in a graph. A simple path v1v2 . . . vk in G is

called an M -augmenting path if

3

(i) k is even, i.e.: the length of the path is odd

(ii) every second edge in the path lies in M and every second edge lies outside M
(iii) the first edge lies outside M , i.e.: {v1, v2} 6∈ M .

(iv) v1 and vk are unmatched vertices in M .

One immediately observes the following: Let M be a matching and P an M -augmenting

path, Let M ′ ⊆ E be the set of edges obtained from M by replacing the edges along P
which lie in M by those which don’t. Then M ′ is also a matching and |M ′| = |M |+ 1.

Hence, if there exists an M -augmenting path, M is not a maximum matching.

Proof of Hall”s theorem. It is obvious that Hall’s condition is necessary since, if A ⊆ X
and x ∈ A, then x can a priori only be matched with a vertex in N(A). In an X-perfect

matching, every vertex of A must be matched, so there must be at least as many vertices

in N(A) as there are in A.

So suppose Hall’s condition is satisfied. Let M be any matching such that |M | < |X|.
It suffices to prove the existence of an M -augmenting path. Since M is not X-perfect,

there is at least one unmatched node in X . Pick one, call it x0. Set A := {x0}. Hall’s

condition says |N(A)| ≥ |A| = 1, so x0 has at least one neighbor. Pick a neighbor, call

it y0. If y0 is unmatched, then x0y0 is an M -augmenting path.

So we may suppose y0 is matched, say to x1. Set A := {x0, x1}. Hall’s condition

says |N(A)| ≥ |A| = 2, so there is at least one more vertex, other than y0, which is

a neighbor of either x0 or x1. Pick such a vertex, call it y1. If y1 is unmatched and a

neighbor of x0, then x0y1 is an M -augmenting path. If y1 is unmatched and a neighbor

of x1, then x0y0x1y1 is an M -augmenting path.

So we may assume that y1 is matched, say to x2. Keep iterating the above proce-

dure to produce a sequence of distinct vertices x0, y0, x1, y1, x2, y2, . . . , xk, yk, until

you hit an unmatched vertex yk. Note that this must eventually happen since applying

Hall’s condition with A = X implies that |Y | ≥ |X| and hence, if there is an un-

matched vertex in X there must also be one in Y . Once we hit an unmatched yk, there

will be a shortest path from yk back to x0 which only passes through vertices among

those in the above sequence, and such that every second edge along this path is of the

form {xk, yk−1} and included in M . Hence every other edge is not in M , since M
is a matching. The path starts in Y and ends in X , so it has odd length. The first and

last vertices, yk and x0, are unmatched. Hence this is an M -augmenting path, v.s.v. �

Crucially, the above proof immediately yields an algorithm for finding a maximum

matching in a bipartite graph, namely:

Augmenting path algorithm for bipartite graphs. Start with the empty matching

M = φ. Perform a breadth-first search for an M -augmenting path. If no such path

is found, conclude that M is a maximum matching and stop. If such a path is found,

replace M by the augmented matching M ′, got by exchanging edges along the M -

augmenting path. Repeat.

